e
CISCO White Paper

Deconstructing and Defending Against Group 72

The following members of the Talos Security Intelligence and Research Group contributed to this paper. Andrea
Allievi, Joel Esler, Douglas Goddard, Shaun Hurley, Martin Lee, Craig Williams, and Alain Zidouemba.

Introduction

Everyone has certain characteristics that can be recognized. This may be a way of walking, an accent, a turn of
phrase or a style of dress. If you know what to look for you can easily spot a friend or acquaintance in a crowd by
knowing what characteristics to look for. Exactly the same is true for threat actors.

Each threat actor group has certain characteristics that they display during their attack campaigns. These may be
the types of malware they use, a pattern in the naming conventions of their command and control servers, their
choice of victims, etc. Collecting attack data allows an observer to spot the characteristics that define each group
and identify specific threat actors from the crowd of malicious activity on the Internet.

Cisco Talos Security Intelligence and Research Group collects attack data from various ‘l'a L‘:’S
telemetry systems to analyze, identify, and monitor threat actors through their different tactics,

techniques, and procedures. Rather than give names to the different identified groups, Talos assigns numbers to
the threat actors. Talos frequently blogs about significant attack campaigns discovered. Behind the scenes the
team integrates intelligence data directly into Cisco products to protect against these attacks. As part of the
research Talos continues to keep track of certain threat actor groups and their activities. In conjunction with a
number of other security companies, Talos is taking action to highlight and disrupt the activities of the threat actors
identified by the team as Group 72.

Background on Group 72

Group 72 is a long standing threat actor group involved in Operation SMN, named Axiom by Novetta. The group is
sophisticated, well-funded, and possesses an established, defined software development methodology. The group
targets high-profile organizations with high-value intellectual property in the manufacturing, industrial, aerospace,
defense, and media sectors. Geographically, the group almost exclusively targets organizations based in the
United States, Japan, Taiwan, and Korea. The preferred tactics of the group include watering-hole attacks, spear-
phishing, and other web-based tactics.

The tools and infrastructure used by the attackers are common to a number of other threat-actor groups which may
indicate some degree of overlap. Talos has seen similar patterns used in domain registration for malicious
domains, and the same tactics used by other threat-actor groups indicating that Group 72 may be part of a larger
organization that comprises many separate teams, or that different groups share tactics, code, and personnel from
time to time.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 21

http://blogs.cisco.com/author/AndreaAllievi
http://blogs.cisco.com/author/AndreaAllievi
http://blogs.cisco.com/author/joelesler
http://blogs.cisco.com/author/douglasgastonguaygoddard
http://blogs.cisco.com/author/shaunhurley/
http://blogs.cisco.com/author/martinlee/
http://blogs.cisco.com/author/CraigWilliams/
http://blogs.cisco.com/author/AlainZidouemba
http://www.novetta.com/blog/2014/14/cyber-security-coalition

It is possible that Group 72 has a vulnerability research team searching for 0-day vulnerabilities in Windows.
The group is associated with the initial attack campaigns utilizing exploits for the following vulnerabilities
CVE-2014-0322, CVE-2012-4792, CVE-2012-1889, and CVE-2013-3893.

Frequently the group deploys a remote access trojan (RAT) on compromised machines. RATs are used both to
steal data and credentials from compromised machines, and to use the machine as a staging post to conduct
attacks against further systems on the network, allowing the attackers to spread their compromise within the
organization. Unlike some threat actors, Group 72 does not prefer to use a single RAT as part of their attacks.
Talos researches have observed that the group uses the following RAT malware and have provided detection
coverage against each of these:

e GhOst RAT (aka Moudoor)

¢ Poison lvy (aka Darkmoon)

e HydraQ (aka 9002 RAT aka McRAT aka Naid)

o Hikit (aka Matrix RAT aka Gaolmay)

e Zxshell (aka Sensode)

o DeputyDog (aka Fexel) — Using the kumanichi and moon campaign codes

e Derusbi

e PlugX (aka Destroy RAT aka Thoper aka Sogu)

According to Talos data, HydraQ and Hikit are unique to Group 72 and two other threat actor groups.

While their operational security is very good, patterns in their domains can be identified, for example naming
domains after their intended victim. Talos has observed domains such as companyname.attackerdomain.com and
companyacronym.attackerdomain.com. Analysts have also observed similar patterns in the disposable email
addresses used to register their domains. These slips, among others, allow Talos researchers to follow their
activities. Intriguingly researchers have observed the same email address being used in the activities of this and
two other threat-actor groups. This may suggest that these three groups are indeed one unit, or possibly hint at
shared staff or ancillary facilities.

The following paper is a technical analysis on the functionality of one of the most sophisticated Remote
Administration Tools (RATSs) used by Group 72 to conduct cyber-espionage operations — ZxShell (aka Sensocode).

Once the ZxShell RAT is installed on the host it will be used to administer the client, exfiltrate data, or leverage the
client as a pivot to attack an organization’s internal infrastructure. Following is a short list of the types of tools
included with ZxShell:

o Keylogger (used to capture passwords and other interesting data)

e Command line shell for remote administration

e Remote desktop

e Various network attack tools used to fingerprint and compromise other hosts on the network

e Local user account creation tools

For a complete list of ZxShell commands please see the MainConnectionlo section of the paper.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 2 of 21

http://tools.cisco.com/security/center/viewAlert.x?alertId=32870
http://tools.cisco.com/security/center/viewAlert.x?alertId=32870
http://tools.cisco.com/security/center/viewAlert.x?alertId=27711
http://tools.cisco.com/security/center/viewAlert.x?alertId=26148
http://tools.cisco.com/security/center/viewAlert.x?alertId=30843

The analysts involved were able to identify command and control (C&C) servers, dropper and installation methods,
means of persistence, and identify the attack tools that are core to the RAT’s purpose. In addition, the researchers
used their analysis to provide detection coverage for Snort, Clsco Advanced Malware Protection, and ClamAV.

Distribution and Delivery

ZxShell has been around since 2004 with a lot of versions available in the underground market. Talos analyzed the
most common version of ZxShell, version 3.10. There are newer versions, up to version 3.39 as of October 2014.

An individual who goes by the name LZX in some online forums is believed to be the original author of ZxShell.
Since ZxShell has been around for at least a decade, numerous people have purchased or obtained the tools
necessary to set up ZxShell C&C servers and generate the malware that is placed on the victim’s network. ZxShell
has been observed to be distributed through phishing attacks and dropped by exploits that leverage vulnerabilities
such as CVE-2011-2462, CVE-2013-3163, and CVE-2014-0322.

Analysis of the Main ZxShell Module

To illustrate the functionality of main ZxShell module, let’s take a look at the following sample:

¢ MD5: €3878d541d17b156b7ca447eeb49d96a
e SHA256: leda7e556181e46ba6e36f1abbfel8ff5566f9d5e51c53b41d08f9459342e26¢

It exports the following functions, which are examined in greater detail below:

¢ DlIMain

¢ Install

¢ Unlnstall

¢ ServiceMain

¢ ShellMain

¢ ShellMainThread
¢ zxFunction001

¢ zxFunction002

DlIMain

DlIMain performs the initialization of ZxShell. It allocates a buffer of 0x2800 bytes and copies the code for the
ZxGetLibAndProcAddr function. To copy memory, the memcpy function is invoked. It is not directly used from
msvcrt.dll but is instead copied to another memory chunk before being called. Finally, the trojan Import Address
Table (IAT) is resolved and the file path of the process that hosts the dll is resolved and saved in a global variable.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 3 of 21

http://tools.cisco.com/security/center/viewAlert.x?alertId=24794
http://tools.cisco.com/security/center/viewAlert.x?alertId=29886
http://tools.cisco.com/security/center/viewAlert.x?alertId=32870

Install

ZxShell.dll is injected in a shared SVCHOST process. The Svchost group registry key
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost is opened and the netsvc group value data
is queried to generate a name for the service.

Before the malware can be installed a unigue name must to be generated for the service. The malware
accomplishes this through querying the netsvc group value data located in the svchost group registry key which is
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost.

At startup, Svchost.exe checks the services part of the registry and constructs a list of services to load. Each
Svchost session can contain multiple shared services that are organized in groups. Therefore, separate services
can run, depending on how and where Svchost.exe is started.

E Registry Editor - okl

fhe fot Yiew Fpvomtes Hep

e |4 Swchost * | Narm Type Dats A
defragive 5] Detaut) REG 82 (valse not s)
Loerece
“| agpResdness REG_ MULTIS2 Agphesdness
e
S 2drstSVGroup REG MULTL 2 fodratSy
wehndNdn L
setwart] W Ocomlaunch REG MILTLSZ Power LM Brckerntrastructine PlugPley Doambsunch Devicelnstall Systerr
ol e > v .
nvicehbe Netwt o d-lfva;'.v -f-‘. MULTL 2 defragme
S CSarnce REG MULTI SZ vemicheartbest ymicrav
rtwm Network
*imzne REG_MULTLSZ S
MabworkSenics * LecalService REG_MULTLSZ nai WeiServiceHout wiltime EventSystem WinttsdutoPeeny S Satplve me
NetworkSerscetemo | LecalServcetnd Nelmpenionatien BEG_MULTISZ T
NetworkServcefeme ' LecalServcelNetwork Resticted "4 TS0t wamast hamegreupgt
pnm vd
wENdgontBuide WUDI
up P 0P € lanm ver KEECT ipMpon
WepHoutSwGroug * NetwortSenvice REG_ MULTIS2 Crypeiec slasuc lanmanworkssation Nagdgent WinfiM WECSYC DNSCache
wercplvsppert = NetworkSenicahndNoimgersonaston REG_MULTL 52 Ktmbm
WEBpOu] NetworkSenicelNetwork Restrictad REG MIATLSZ PolcyAgent
e 1D parOint REG_MULT 52 PrerDmtSuc

< > <

| Compute/\HKEY_LOCAL MACHINE, SOF TWASRE\ Micrasof Wind ows NTWCurentVersion \Svchast

Image 1. Svchost Groups registry key

Svchost.exe groups are identified in the registry key depicted in Image 1. Each value under this key represents a
separate Svchost group and appears as a separate instance when you are viewing active processes. Each value is
a REG_MULTI_SZ value and contains the services that run under that Svchost group. Each Svchost group can
contain one or more service names that are extracted from the following registry key, whose Parameters key
contains a ServiceDLL value:

HKEY LOCAL MACHINE\System\CurrentControlSet\Services\Service

On a Windows machine, the netsvc group contains names of both existing and non-existing services. ZxShell
exploits this fact by cycling between each of the names, verifying the existence of the real service. The service’s
existence is verified with the ServiceExists function, which attempts to open the relative registry sub-key in
HKLM\SYSTEM\CurrentControlSet\Services. The first service name that is not installed on the system becomes
the ZxShell service name.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 4 of 21

http://blogs.cisco.com/wp-content/uploads/image015.jpg

A new service is then created using the service parser function ProcessScCommand. ZxShell implemented its own
version of the Windows SC command (Image 2). There are minor differences between the ZxShell implementation
of this command and the original Windows one, but they are irrelevant for the purpose of the analysis. The
command used to install the service is:

sc create <service name> <service name> “$SystemRoot%\System32\svchost.exe -k
netsves”

where <service name> is the chosen infected service name.

push ebx ; 0

push ebx

push offset netSvucLaunchStr ; “\'"%SystemRooti\\System32\\suchost.exe
push esi

push esi ; ServiceName

lea eax, [ebp+ScCommand]

push offset aScCreateSSSDD ; "sc create %s %s %s %d %d"

push eax

call g_lpsprintf ; Create total service command

lea eax, [ebp-8Ch]

push eax ; cndClass

call ProcessScConmand

add esp, 2Ch

test eax, eax

jz ServiceCreationError

Image 2. “SC” command used to create the target service, and parsed by “ProcessScCommand” routine

The installed service registry key is opened and the two values under its Parameter subkey are created. These two
values, ServiceDIl and ServiceDIlUnloadOnStop, are needed for services that run in a shared process.

Before the service is started ChangeServiceConfig is called to modify the service type to shared and interactive.
If the service fails to start then a random service name formatted as netsvc_XxxXXXxx, where XxXxxxXxxx represent
an 8-digit random hex value, is added to the netsvc group and the entire function is repeated.

ServiceMain

This function is the entry point of the service. It registers the service using the RegisterServiceCtrIHandler Windows
API function. The ZxShell service handler routine is only a stub; it responds to each service request code, doing
nothing, and finally exits. It sets the service status to RUNNING and finally calls the ShellMain function of ZxShell.

ShellMain

The ShellMain function is a stub that relocates the DLL to another buffer and spawns a thread that starts

from ShellMainThreadint at offset +OxCOCD. The ShellMainThreadInt function gets the HeapDestroy Windows

API address and replaces the first three bytes with the RET 4 opcode. Subsequently, it calls the FreeLibrary
function to free its own DLL buffer located at its original address. Because of this, the allocated heaps will not be
freed. It re-copies the DLL from the new buffer to the original one using the memcpy function. Finally, it spawns

the main thread that starts at the original location of the ShellMainThread procedure and terminates. At this point,
the ZxShell library is no longer linked in the module list of the host process. This is important because if any system
tool tries to open the host process it will never display the ZxShell DLL.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 5 of 21

http://blogs.cisco.com/wp-content/uploads/image042.jpg

ShellMainThread

This thread implements the main code, responsible for the entire botnet DLL. First, it checks if the DLL is executed
as a service. If so, it spawns the service watchdog thread (Image 3). The watchdog thread checks the registry path

of the ZxShell service every two seconds, to verify that it hasn’t been modified. If a user or an application modifies

the ZxShell service registry key, the code restores the original infected service key and values.

E
(fl

; Attrib

var_104=

push
mov
sub
push
lea
push
push
call
add
jnp

ServiceWatchdogThread proc near

utes: bp-based frame

byte ptr -184h

ebp

ebp, esp

esp, 184h

offset g_lpServiceName ; “iprip"

eax, [ebp+uar_164]

offset aSystemCurren_5 ; “SYSTEM\\CurrentControlSet\\Services\\%s"
eax

g_lpsprintf

esp, Och

short loc_3200AEAE

i ¥

loc_328BAEAE :
cnp g_bConnect, 9
jnz short loc_3200AESA

M

loc_3200AESA:

push
lea

offset g_lpServiceRegKeyFile
eax, [ebp+uar_1604] ServiceWatchdogThread endp
eax

80000862h

sSxCreateAndRestoreKey

esp, BCh

20088 ; duMilliseconds
ds:Sleep

Image 3.

The watchdog thread of ZxShell service

The buffer containing the ZxShell DIl in the new location is freed using the VirtualFree API function. A handle to the
DLL file is taken in order to make its deletion more difficult. The ZxShell mutex is created named @_ZXSHELL_@.

ZxShell plugins are parsed and loaded with the AnalyseAndLoadPlugins function. The plugin registry

keyHKLM\SYSTEM\CurrentControlSet\Control\zxplug is opened and each value is queried. The registry value

contains the plugin file name. The target file is loaded using the LoadLibrary API function, and the address of the

exported function zxMain is obtained with GetProcAddress. If the target filename is incorrect or invalid, the plugin

file is deleted and the registry value is erased. That is performed by the function DeleteAndLogPlugin. Otherwise,

the plugin is added to an internal list. Here is the data structure used to keep track of the plugins:

typedef struct 2ZX PLUGINS STRUCT {
LPSTR lpStrRegKey; // + 0x00 - ZxShell Plugins registry key string

//

(like 'SYSTEM\CurrentControlSet\Control\zxplug"')

DWORD dwUnknown?2; // + 0x04 - Unknown DWORD value
LPVOID 1lpl38hBuff; // + 0x08 - Plugins list
DWORD dwZero; // + 0x0C - Always zero

HANDLE hReg; // + 0x10 - Handle to plugin registry key

} ZX PLUGINS STRUCT, *PZX PLUGINS STRUCT;

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public.

Page 6 of 21

http://blogs.cisco.com/wp-content/uploads/image111.png

The thread KeyloggerThread is spawned and is responsible for doing keylogging on the target workstation.
Futher analysis of keylogger appears later in the paper. Finally the main network communication
function GetlpListAndConnect is called.

GetlpListAndConnect

This function is at the core of the RAT’s network communication. It starts by initializing a random number generator
and reading 100 bytes inside the ZxShell DIl at a hardcoded location. These bytes are XOR encrypted with the
byte-key 0x85 and contains a list of remote hosts where to connect. The data is decrypted and the remote host list
is parsed and verified using the BuildTargetlpListStruct function. There are three types of lists recognized by
ZxShell: plain IP addresses, HTTP, and FTP addresses.

If the list does not contain any item, or if the verification has failed, the ZxShell sample tries to connect to a
hardcoded host with the goal of retrieving a new updated list. Otherwise, ZxShell tries to connect to the first item
on the list. If ZxShell successfully connects to the remote host, the function DoHandshake is called (Image 4).
This function implements the initial handshake which consists of exchanging 16 bytes, 0x00001985 and
0x00000425, with the server.

The functionGetLocalPcDescrStr (Image 4) is used to compose a large string that contains system information
of the target workstation. That information is the following:

¢ local hostname

e organization

e owner

e operating system details

e CPU speed

o total physical memory

The string is sent to the remote host and the response is checked to see if the first byte of the response is 0xF4,
an arbitrary byte. If it is, the botnet connection I/O procedure is called through theMainConnectionlo function.

A 4

eax, [ebp+curlpsStr]

eax ; descStr
GetLocalPcDescrStr

eax, eax

ecx

[ebp+bConnectRetVal]
short NobDescStr

A J

offset aSocketD ; “socket: Zd\ri\n’'

ZxDbgPrint
ebx ; char
0 ; int

[ebp+bConnectRetVal] ; sock
[] ; int
DoHandShake

esp, 18h

eax, eax

short loc_32011726

v

Image 4. The GetLocalPcDescrStr and DoHandshake functions called before starting the command processing

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 7 of 21

http://blogs.cisco.com/wp-content/uploads/image08.jpg

Otherwise, the ZxShell code closes the socket used and sleeps for 30 seconds. It will then retry the connection
with the next remote host, if there is one.

It is noteworthy that this function includes the code to set the ZxShell node as a server. If one of the hardcoded
boolean values is set to 1, a listening socket is created. The code waits for an incoming connection. When the
connection is established a new thread is spawned that starts with theMainConnectionlo function.

MainConnectionlo

The MainConnectionlo function checks if the Windows Firewall is enabled, sets the Tcp Keep Alive value
and Non-blocking mode connection options, and receives data from the remote host through the
ReceiveCommandData function. If the communication fails, ZxShell disables the firewall by modifying the
registry key:

HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\
StandardProfile

Then the connection is retried. The received command is then processed by the ZxShell function with the
ProcessCommand function. The command processing function starts by substituting the main module name
and path in the hosting process PEB, with the one of the default internet browser. The path of the main browser
of the workstation is obtained by reading the registry value (Image 5):

HKLM\ SOFTWARE\Classes\HTTP\shell\open\command

E: 4 Registry Editor - oIEN

File Edit View Favortes Help
HmiDigSafeHelper HtmIDIGS A | Name Type Data
htmifile
htmifie_FullWindowEmbed
"l http
Defaulticon

Extensions

b1 (Default) | REG_SZ Ll. Program Files\Intemet Explorersoplore. exe” %1
b’ DelegateExecute REG_SZ (1TFEST52-085A-4665-84CD-569794602F5C)

4 shell
. open
command
https
HWXInkE-Ink
HWXInkE-ink.1
HxDS HxReguterProtocol
HeDS HeRegnterProtocoll o
< > < >

Computer\HKEY_LOCAL MACHINE\SOFTWARE\Classes\http\shell\cpen'\command

Image 5. Our test workstation use Windows Internet Explorer as default browser

This trick renders identification by the firewall more cumbersome. A host firewall will recognize the outgoing
connection as originated by the browser instead of the ZxShell service host process. The browser process always
performs outgoing connections and the firewall shouldn’t block them.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 8 of 21

http://blogs.cisco.com/wp-content/uploads/image09.jpg

The command processing is straightforward. Following is the list of common commands:

COMMAND MEANING

Help /? Get help

Exit / Quit Exit and shut down the botnet client

SyslInfo Get target System information

SYNFlood Perform a SYN attack on a host

Ps Process service Unix command implementation
CleanEvent Clear System Event log

FindPass Find login account password

FileTime Get time information about a file

FindDialPass List all the dial-up accounts and passwords

User Account Management System

TransFile Transfer file in or from remote host

Execute Run a program in the remote host

SC Service control command, implemented as the Windows one
CA Clone user account

RunAs Create new process as another User or Process context.
TermSvc Terminal service configuration (working on Win Xp/2003)
GetCMD Remote Shell

Shutdown Logout, shutdown or restart the target system

ZXARPS Spoofing, redirection, packet capture

ZXNC Run ZXNC v1.1 -- a simple telnet client

ZXHttpProxy Run a HTTP proxy server on the workstation

ZXSockProxy Run a Sock 4 & 5 Proxy server

ZXHittpServer Run a custom HTTP server

PortScan Run TCP Port MultiScanner v1.0

KeylLog Capture or record the remote computer’s keystrokes. The implementation is a userland keylogger
that polls the keymap with each keystroke.

LoadDlII Load a DLL into the specified process

End Terminate ZxShell DLL

Uninstall Uninstall and terminate ZxShell bot DLL

ShareShell Share a shell to other

CloseFW Switch off Windows Firewall

FileMG File Manager

winvnc Remote Desktop

rPortMap Port Forwarding

capsrv Video Device Spying

zxplug Add and load a ZxShell custom plugin

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public.

Page 9 of 21

This set of functionality allows the operator complete control of a system. Being able to transfer and execute
files on the infected system means the attacker can run any code desired. Further, the keylogging and remote
desktop functionality allows the operator to spy on the infected machine, observing all keystrokes and viewing
all user actions.

Uninstall

Unloads ZxShell and deletes all of the active components. This simply deletes the ZxShell service key from the
Windows registry (using SHDeleteKey Api) and all of the subkeys. Finally, it marks ZxShell main DIl for deletion
with the MoveFileEx Windows API.

ZxFunction001

This function is the supporting functionality for WinVNC. To allow the VNC session to connect, the current network
socket WSAProtcol Info structure is written to a named pipe prior to calling zZxFunction001. Once the named pipe
has been created, CreateProcessAsUserA is called with the following as the CommandLine parameter:

<systemroot>\\rundll32.exe <zxshell dll name>,zxFunction00l <name of NamedPipe>

ZxFunction001 modifies the current process memory, uses data contained in the named pipe to create a socket,
and then executes the code that sends the remote desktop session to the server controller.

ZXFunction002
This function will either bind the calling process to a port or has the calling process connect to a remote host.
The function is called in the following manner:

<systemroot>\\rundl132.exe <zxshell dll name>, zxFunction002 <name of NamedPipe>

The functionality (connect or bind) depends on the data contained within the named pipe. Unlike ZxFunction001,
this is not used by any of the RAT commands in the ZxShell.dll.

Kernel Device Driver LoveUSD

Apart from user-mode ZxShell droppers mentioned earlier, there is a file (SHA256:
1e200d0d3de360d9c32e30d4c98f07e100f6260a86a817943a8fb06995¢15335) that installs a kernel device driver
called loveusd.sys. The architecture of this dropper is different from the others; it starts extracting the main driver
from itself. It adds the SeLoadDriver privilege to its access token and proceeds to install the driver as a fake disk
filter driver. ZxShell opens the registry key that describes the disk class drivers:

SYSTEM\CurrentControlSet\Control\Class\{4D36E967-E325-11CE-BFC1-08002BE10318}

It then adds the “Loveusd.sys” extracted driver name to the upper filter list. In our analyzed sample the
“Loveusd.sys” driver is installed with the name “USBHPMS” (Image 6). Finally the driver is started using the
ZwLoadDriver native API.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 10 of 21

http://msdn.microsoft.com/en-us/library/windows/desktop/ms741675%28v=vs.85%29.aspx

The ZxShell driver starts by acquiring some kernel information and then hooking “ObReferenceObjectByHandle”
API. Finally it spawns two system threads.

The first thread is the “communication” thread. ZxShell employs a strange method for communication: it hooks the
NtWriteFile API and recognizes five different special handle values as commands:

e 0x111111111 -- Hide “Loveusd” driver from the system kernel driver list

e 0x22222222 -- Securely delete an in-use or no-access target file-name

o 0x44444444 -- Unhook the ZwWriteFile API and hook KiFastCallEntry

e 0x55555555 -- Remove the ZxShell Image Load Notify routine

e 0x88888888 -- Set a special value called “type” in Windows registry key
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\DriverMain

The second Loveusd system thread does a lot of things. Its principal duties are to create the ZxShell main DLL in
“c:\Windows\System32\commhlp32.dIlI” and to install the Kernel “Load Image Notify routine”. The code then tries to
kill each process and service that belongs to the following list of AV products:

e Symantec Firewall

e Norton

e ESET

o McAfee

e Avast

e Avira

e Sophos

o Malwarebytes

Next, the ZxShell Load-Image Notify function prevents the AV processes from restarting.

The installation procedure continues in the user-mode dropper. The ZxShell service is installed as usual, and the
in-execution dropper is deleted permanently using the special handle value 0x22222222 for the WriteFile API call.
This handle value is invalid: all the Windows kernel handle values are by design a multiple of four. The ZxShell
hook code knows that and intercepts it.

ObReferenceObjectByHandle is a Kernel routine designed to validate a target object and return the pointer to its
object body (and even its handle information), starting from the object handle (even the user-mode one). The hook
installed by ZxShell implements one of its filtering routines. It filters each attempt to open the ZxShell protected
driver or the main DLL, returning a reference to the “netstat.exe” file. The protection is enabled to all processes
except for ones in the following list: Svchost.exe, Lsass.exe, Winlogon.exe, Services.exe, Csrss.exe, ctfmon.exe,
Rundll32.exe, mpnotify.exe, update.exe.

If the type of object that the system is trying to validate is a process, the hook code rewrites the configuration data
of the ZxShell service in the Windows registry.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 11 of 21

S COWINDOWS wystemd 2 drivers

CFF Explorer VI - [USBHPMS. sys]

H LISy x| .
-
Sroperty Vol ™
Operanion ffke « :..{ﬂﬂlln: USHHPMS sys Tia tiaTe Ci\Docurents and Settirgs'Andres Desktop USBHAVS svs
[— & Dos Header o s

“ Rentiea fe @ 3 Headers Fie Type Portable Executadie 32
@ Sousta fie @ Fe Header Fie info {Mcrosoft Visusl C++ v2.1 Ex2
[Cops e 8l Optenal Heaser FleSze 136,50 K8 (37276 bynes)
@ Fibsticn Se i Vel 4 Data Drectories k) € Lm 36.50 KB {37376 bytes)

— M Section Headers x|

_‘J Trvow | B por gl a A Creates Sunday 19 October 2014, 22,965,496
eetronca = OOt Uneciln BN . | XA =) =
x & e | — ©Resouce Deacizey mdral; 7‘5.: Gay 13 Aprl 2008, 19.54.16
[—) Oebug Ceectany Aczesned {Sundey 16 October 2014, 22.96,48
— ﬁm Conventer MOSE 2C00SESERIDTACTI66528 DL 155
Altre risorse —) Dependency Walker AL €EF O 6 83ACDAAITEF 100 T5SSADCRB0T1E
— ‘ﬁ,Nu Editor
Q) rreien — % Identifier
&) Document — A lspodt Adder Property Ve
&) Decurens condvell [— ‘50.* Desassembiler Corperyame Microsoft Corparaton
3 o o o [3 Pbr R

q Risoroe d rese Meverson 3.5, 2000, 5512 Lpsp 0004130853}
—— 9 UPX Uniley

IraemaiNave nastat.exe

Dettogh LegaCopwgnt £ Moosft Corporator, Tull | deit nsarvat,
OnginaiFiename nesstat.eve
Prozucthiane Sstens operao Mo0soft B Windons &

Fe 3 yztene

ctiobre 2014, 22.46 -] | -} -] -] -] | -1 -] -]

b - - - - | - - — -

: 3090 W ubd.svs e sy | USEONVS.a |usthuDusys uibnte.evs usbportays LSSSTORSYS ubahdins -

Dsamkm Netstat Tc»,m'lsm- Mcrosoft Coporation yersone Set 5.1 26005512 Data cessone: 15/50/2014 22.4 093 *f Risorse del computer

Image 6. The test Windows XP workstation trying to open the sys file of ZxShell LoveUSD driver

The last type of Kernel modification that ZxShell rootkit performs is the system call dispatcher (KiFastCallEntry)
hook. In this manner, ZxShell is able to completely hide itself, intercepting the following Kernel API calls:
ZwAllocateVirtualMemory, ZwOpenEvent, ZwQueryDirectoryFile, ZwWriteFile, ZwEnumerateKey,

and ZwDeviceloControlFile.

Command and Control Server

Sample (SHA256: leda7e556181e46ba6e36flabbfel8ff5566f9d5e51c53b41d08f9459342e26c) is configured to
act as a server. The symbol “g_bCreateListenSck” is set to 1. This means that, as seen above, the ZxShell DIl is
started in listening mode. It connects to the first remote C&C that tries to contact it and succeeds in the handshake.
The encrypted IP address is “127.0.0.2” (used as loopback) and no connection is made on that IP address (due to
the listening variable set to 1).

Malware Package
Talos analysts used the ZxShell package for version 3.10 (SHA256:
1622460afbc8a255141256¢b77af61c670ec21291df8fe0989¢37852h59422h4). The convenient thing about this is

that the C&C panel worked with any version, 3.10 and above. The buttons are all in Chinese but with the help of
Google Translate and keen detective skills (read: button clicking), analysts deciphered the functionality.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 12 of 21

http://blogs.cisco.com/wp-content/uploads/image026.jpg

When you start the controller, you need to set the port you want to listen on and if you've set a password,
add it here.

EhEss A

M esen
- [ETHARET
PORT e .8 £
PASSMORD | risaEEw
ENTER| WAZR .
CONFIRM| wuER 5

SAVE SETTINGS reien arvarman

L9a | =a

Image 7. Setting up the C&C panel

Once an infected machine connects, you see its information displayed in a selection box at the top (Image 7)
There are some built in functions on the side for the more common features. These include remote desktop,

webcam spying, remote shell, and file management. You can also select a host and type help for a full list of
commands.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 13 of 21

http://blogs.cisco.com/wp-content/uploads/image06.png

0 D5 Cunt 220

WUSE Omm Exdigp CONNECT TIME SYSINFO
ELUL] iriesd 3 Euni Ee L]
echinade ™10 17218

avchinad® w0 10 1% I8

OTHER
L L]
AR W | sk MBECONNECT BHEN
BEE W RIS FETINFD SaEn
FILENGR 2au®
Aa anin- t0d1: WINVNC Stai
3 23 i PRS2 4 CAPSRY RSN
PORTFND MM
%..&..nmm

GETSHELL w%ft
[A—

ZRT STARTCNC
?gmm St

DR 10 1916999 Wich® Trs 5F7 OQWOD0 CTV INIW W MR 06TV
DEA 10 118 W% Ninlr Trs 513 DEWE) CIV 238 Wx, MR 00T

g

#
cBn
oA

STOPCNC
RSN RS SUSPEND
= i.,._ B EXIT

ax
TNy y
TN e
Ei¥lng

N80T e

Z E?tw.
"Mt

LU S il By o]
B I
ﬂg!&l
».

o
THIARLESDAYMASITERS

Image 8. ZxShell versions 3.1 and 3.2 running concurrently

Researchers infected the same machine with two different versions of ZxShell (Image 8). Sending the help
command for each, you can see the extra features added between version 3.1 and 3.2.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public.

Page 14 of 21

http://blogs.cisco.com/wp-content/uploads/image00.png

-uhmZ)h P

CIE e %ﬁﬁﬂg

Ch
ClesaEvant
CloxaF¥ mmamm
Ead R

Execule
FileTine
Falp |
Leadill
FartScea
Fs

Tunhs

ST

ShareSiall
Shutbown

TXHe A pFr oy

2AHs tpSarver i’
2AFlug v M &gé@xﬁ“
TASeckProzy =Xecks 4 4 S

ﬁ“%m"
-ldunnZJ

ﬁ*iﬁlﬁgﬁ;m%ﬂh

ClesaEvant
CloxeF¥

Tad

Execute
FileTine
hnﬂ:l slFass

i glimmmismm
,i —rsr..nimm _

TransFile Ll
Tainatall =
Vser = %3
TXARES wa UXARYS
TXMC =N

TXHe pFrozy ==IHTTP fﬁz :
TAH tpSarver wOHTTP

rlug == Db
WS eckProzy =Seckr 4 A5

BSMHRR
machinel?

Image 9. New features in ZxShell version 3.2

Keylogging, ZXARPS (IP and URL spoofing), and SYNFlood are some of the interesting features added to
version 3.2 (Image 9).

Version Information

Talos analysts wrote a script to extract version info from the available binaries .

e 3.100:914
e 3.200:152
¢ 3.210:118
e 3.220:14
e 3.390:3

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 15 of 21

http://blogs.cisco.com/wp-content/uploads/image07.png

In versions 3.1 - 3.21, the configuration info is XOR-encoded with 0x85. This configuration info can be changed
with a tool included in the ZxShell package.

7| Zxshell BEEEE = @ @1

o] L R AT R R B MR R |
PEJE: CiMUzersz‘\UseriDesktophs3. Ohpub': I:J

45 =8 7539
. 1985
Rt SiEH R Rs ISR

FAFREVALVHE, BER TR el
Firfg. A1l

| Z &Rt Th R B shifilks
[O] ICa.nr_'elI

Image 10. Variations in versions 3.22 and 3.39

In versions 3.22 and 3.39 the routine changes (Image 10). The new XOR encoding byte is Ox5B. The data is
stored in the last 0x100 bytes of the file. The first eight bytes of data are static. Then there is the dll install name,
the domain, and the port.

Extracted URL Analysis

Knowing the obfuscation routines for this data, Talos researchers wrote a script to extract the URLs / IPs and
ports stored.

The most common ports used are: 80, 1985, 1986, and 443. 1985 is the default port for the malware, 1986 is the
lazy variation of that port. Ports 80 and 443 are the default ports for HTTP and HTTPS traffic. The next most
common is port 53. This is used in some of the newer 3.22 and 3.39 samples. After that, the count for each port
starts declining sharply. The choices are interesting though, many correspond to what looks like the birth year of
the controller (i.e., years in the late 1980s and early 1990s), and others seem to match the year the malware was
launched (i.e., in the 2000s, relatively close to the current year).

Since this malware dates back to around 2004, there are many samples containing C&C URLs from the 3322.org
page. This page used to offer no-IP type hosting and was so widely used by malware authors that Microsoft did a
takedown in 2012. A similar service, vicp.net, is also seen in many of the domains.

In the malware, if a domain is configured, it will retrieve domain.tld/myip.txt. This file contains a list of IP addresses
for the infected machine to connect back to. Otherwise, if an IP address is configured, it will connect directly to that
IP address.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 16 of 21

http://blogs.cisco.com/wp-content/uploads/image05.png

Cloning the ZxShell Server

Talos researchers have written a simple C++ ZxShell Server that implements the communication and

the handshake for versions 3.10 and 3.20 of the ZxShell DLL. The implementation is quite simple: After the
handshake, two threads that deal with data transfer are spawned. Images 11 and 12 show the Server and
the ZxShell Keylogger in action:

% -
ZxShell 3.x Fake Server 0.1 L5l n

Cisco Svstems

Haiting for an inco

Ac ed an 1ncoming co
la information
3410 MHz,RAM:2047MB

Hin/-DevVm>

Image 11. The server has accepted a connection from a remote host

ZxShell 3.x Fake Server 0.1 - o IES

hidel [-List]l [-Cleanupl

-y1ey view the kevystroke information online
hide run kevlogger background
stop the kevlogger
get a total ~ds list
-cleanup c
Hin/-DevWm>Kevlog —view
¢ The Most Code By WinEgaDrop
Kevl ogger I[s Start 1ng
Note: To Leave Kevlog View Mode By Tuping Character:"0" At Any Time

[1tle: Gmail - Windows Internet Explorer

ail.com

cretbox[CTRL] gmail .comtest-pwdl
: nter.it
Hindows Title: http://www.inter.1t/ Windows Internet Explorer
www . vahoo . amazon . com
Hindows Title: http://www.amazon.com/ - Windows Internel Explorer
segretmai l[CTRL] "vahoo.com[TABltest-pud?
Hindows Title: C:\Users\ \Desktop\7xShell

Image 12. The ZxShell keylogger has captured two user passwords (gmail.com and amazon.com)

Image 12 shows a very interesting feature of the ZxShell keylogger: once installed and activated, the keylogger
is able to catch each password that the user inserts in the login box of each website (like Google, Amazon and
so on...). This makes the keylogger a valuable weapon for the attackers. They will be able to steal and resell the
sensitive data of each victim in the underground market.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 17 of 21

http://blogs.cisco.com/wp-content/uploads/image031.jpg
http://blogs.cisco.com/wp-content/uploads/image10.jpg

Conclusion

Advanced persistent threats will remain a problem for companies and organizations of all sizes, especially those
with high financial or intellectual property value. Group 72’s involvement in Operation SMN is another example of
the type of damage that can be done if organizations are not diligent in their efforts to secure their

networks. ZxShell is one sample among several tools that Group 72 used within their campaign.

ZxShell is a sophisticated tool employed by Group 72 that contains a wide range of functionality. Its detection and
removal can be difficult due to the various techniques used to conceal its presence, such as disabling the host anti-
virus, masking its installation on a system with a valid service name, and by masking outbound traffic as originating
from a web browser. While other techniques are also utilized to conceal and inhibit its removal, ZxShell’s primary
functionality is to act as a Remote Administration Tool (RAT), allowing the threat actor to have continuous
backdoor access to the compromised machine.

As Talos researchers demonstrate, ZxShell is an effective tool that can be ultimately used to steal user credentials
and other highly valuable information. The threat posed by ZxShell to organizations is one that cannot be

ignored. Organizations with high financial or intellectual property value should take the time to ensure their security
requirements are met and that employees are educated about the security threats their organizations face.

Protecting Users From These Threats
The Talos Security Intelligence and Research Group (Talos) is made up of leading threat researchers supported by
sophisticated systems to create threat intelligence for Cisco products that detect, analyze, and protect against both

known and emerging threats.

Because Talos maintains the official rule sets of Snort.org, ClamAV, SenderBase.org, and SpamCop, Talos has
updated the ClamAV names and Snort Signature IDs to detect Group 72 RAT malware as follows:

¢ GhOstRat — Win.Trojan.GhOstRAT, 19484, 27964

e PoisonlVY / DarkMoon — Win.Trojan.DarkMoon, 7816, 7815, 7814, 7813, 12715, 12724

e Hydrag — Win.Trojan.HyDraq, 16368, 21304

¢ HiKit — Win.Trojan.HiKit, 30948

e Zxshell — Win.Trojan.Zxshell, 32180, 32181

e DeputyDog — Win.Trojan.DeputyDog, 28493, 29459

e Derusbi — Win.Trojan.Derusbi, 20080

Talos is the primary team that contributes threat information to the Cisco Collective Security Intelligence (CSI)
ecosystem, which also includes the Security & Trust Organization, Managed Threat Defense and Security

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 18 of 21

Research and Operations (SR&O). Cisco CSl is shared across multiple security solutions and provides industry-
leading security protections and efficacy. The following Cisco solutions work together to protect against Group 72:

AMP
cwWSs o

ESA

Network
Security

WSA Y
Cisco Advanced Malware Protection (AMP) is ideally suited to detect the sophisticated malware used by this
threat actor.

Cisco Cloud Web Security (CWS) or Cisco Web Security Appliance (WSA) prevent access to malicious
websites, including watering hole attacks, and detect malware used in these attacks.

The Network Security protection of Cisco Intrusion Prevention Systems (IPS) and Cisco Next-Generation
Firewalls (NGFW) have up-to-date signatures to detect malicious network activity by threat actors.

Cisco Email Security Appliance (ESA) can block spear phishing emails sent by threat actors as part of their
campaign.

Appendix A: Snort Rules for ZxShell

Initial connection from the infected computer’s perspective — after it connects to the controller.

RECV: 85190000250400000000404000000000
SEND: 86190000040100006666464000000000
RECV: 4edf9340780100000000000000000000
SEND: 00000000000000000000000000000000

The rules are on the first eight bytes of the first two packets. They are hard coded in the binaries. The rest of the
bytes are variable (for example, 66664640 is a floating point version number of ZxShell).

Snort rules:

e sid:32180
e sid:32181

These rules have been released in our community ruleset and can be downloaded and used directly, or
via pulledpork from Snort.org

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 19 of 21

http://www.cisco.com/c/en/us/support/security/amp-firepower-software-license/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
http://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
http://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
http://www.cisco.com/c/en/us/products/security/asa-next-generation-firewall-services/index.html
http://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.snort.org/downloads
https://code.google.com/p/pulledpork/

Appendix B: ClamAV Signatures for ZxShell

e Win.Trojan.ZxShell-11
¢ Win.Trojan.ZxShell-12
¢ Win.Trojan.ZxShell-13
¢ Win.Trojan.ZxShell-14
e Win.Trojan.ZxShell-15
e Win.Trojan.ZxShell-16
e Win.Trojan.ZxShell-17
¢ Win.Trojan.ZxShell-18
¢ Win.Trojan.ZxShell-19
¢ Win.Trojan.ZxShell-20
e Win.Trojan.ZxShell-21
e Win.Trojan.ZxShell-22
e Win.Trojan.ZxShell-23
¢ Win.Trojan.ZxShell-24
¢ Win.Trojan.ZxShell-25
¢ Win.Trojan.ZxShell-26

These signatures are available within the ClamAYV database. Please run freshclam to ensure you stay updated
with the latest coverage.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 20 of 21

Appendix C: List of Memory Offsets for Some ZxShell Functions

Below is a list for some ZxShell functions for sample SHA256:
leda7e556181e46ba6e36flabbfe18ff5566f9d5e51c53b41d08f9459342e26¢:

FUNCTION NAME BRIEF DESCRIPTION OFFSET
ZxGetLibAndProcAddr ZxShell GetProcAddress implementation 0x12CDA
CopyMemoryFromNewMsvcrt ZxShell memory copy routine 0x12C4C
ServiceExists Get if a service is installed in the system or not 0x0A7C7
ProcessScCommand ZxShell “SC” command implementation OXOE3EF
AnalyseAndLoadPlugins Parse the installed plugin list and load each one of them 0x0127B7
DeleteAndLogPlugin Delete a corrupted plugin and log the problem 0x012597
KeyloggerThread ZxShell keylogger implementation 0x0D591
GetlpListAndConnect Analyse the IP list inside the ZxShell PE and tries to connect 0x011496
BuildTargetlpListStruct Build remote server Ip list structure 0x11419
DoHandshake Perform initial connection handshake O0xB8E8
GetLocalPcDescrStr Build a string containing the target workstation data 0x0B627
MainConnectionlo ZxShell main connection I/O routine 0x1126C
ReceiveCommandData Receive each byte from the socket until a newline char 0x016DF
ProcessCommand Main ZxShell command processing routine 0x10C2B

Appendix D: Other Collateral

Here is a non-exhaustive list of ZxShell samples that were analyzed for this report.

Here is a list of Domains organized by port.

ST

Americas Headquarters Asia Pacific Headquarters Europe Headquarters

Cisco Systems, Inc. Cisco Systems (USA) Pte. Ltd. Cisco Systems International BV Amsterdam,
San Jose, CA Singapore The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go
to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply
a partnership relationship between Cisco and any other company. (1110R)

Printed in USA 11/14

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 21 of 21

http://blogs.cisco.com/wp-content/uploads/zxshell-hash-list.txt
http://blogs.cisco.com/wp-content/uploads/zxshell-domains-by-port.txt

