

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 21

White Paper

Deconstructing and Defending Against Group 72

The following members of the Talos Security Intelligence and Research Group contributed to this paper. Andrea

Allievi, Joel Esler, Douglas Goddard, Shaun Hurley, Martin Lee, Craig Williams, and Alain Zidouemba.

Introduction

Everyone has certain characteristics that can be recognized. This may be a way of walking, an accent, a turn of

phrase or a style of dress. If you know what to look for you can easily spot a friend or acquaintance in a crowd by

knowing what characteristics to look for. Exactly the same is true for threat actors.

Each threat actor group has certain characteristics that they display during their attack campaigns. These may be

the types of malware they use, a pattern in the naming conventions of their command and control servers, their

choice of victims, etc. Collecting attack data allows an observer to spot the characteristics that define each group

and identify specific threat actors from the crowd of malicious activity on the Internet.

Cisco Talos Security Intelligence and Research Group collects attack data from various

telemetry systems to analyze, identify, and monitor threat actors through their different tactics,

techniques, and procedures. Rather than give names to the different identified groups, Talos assigns numbers to

the threat actors. Talos frequently blogs about significant attack campaigns discovered. Behind the scenes the

team integrates intelligence data directly into Cisco products to protect against these attacks. As part of the

research Talos continues to keep track of certain threat actor groups and their activities. In conjunction with a

number of other security companies, Talos is taking action to highlight and disrupt the activities of the threat actors

identified by the team as Group 72.

Background on Group 72

Group 72 is a long standing threat actor group involved in Operation SMN, named Axiom by Novetta. The group is

sophisticated, well-funded, and possesses an established, defined software development methodology. The group

targets high-profile organizations with high-value intellectual property in the manufacturing, industrial, aerospace,

defense, and media sectors. Geographically, the group almost exclusively targets organizations based in the

United States, Japan, Taiwan, and Korea. The preferred tactics of the group include watering-hole attacks, spear-

phishing, and other web-based tactics.

The tools and infrastructure used by the attackers are common to a number of other threat-actor groups which may

indicate some degree of overlap. Talos has seen similar patterns used in domain registration for malicious

domains, and the same tactics used by other threat-actor groups indicating that Group 72 may be part of a larger

organization that comprises many separate teams, or that different groups share tactics, code, and personnel from

time to time.

http://blogs.cisco.com/author/AndreaAllievi
http://blogs.cisco.com/author/AndreaAllievi
http://blogs.cisco.com/author/joelesler
http://blogs.cisco.com/author/douglasgastonguaygoddard
http://blogs.cisco.com/author/shaunhurley/
http://blogs.cisco.com/author/martinlee/
http://blogs.cisco.com/author/CraigWilliams/
http://blogs.cisco.com/author/AlainZidouemba
http://www.novetta.com/blog/2014/14/cyber-security-coalition

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 2 of 21

It is possible that Group 72 has a vulnerability research team searching for 0-day vulnerabilities in Windows.

The group is associated with the initial attack campaigns utilizing exploits for the following vulnerabilities

CVE-2014-0322, CVE-2012-4792, CVE-2012-1889, and CVE-2013-3893.

Frequently the group deploys a remote access trojan (RAT) on compromised machines. RATs are used both to

steal data and credentials from compromised machines, and to use the machine as a staging post to conduct

attacks against further systems on the network, allowing the attackers to spread their compromise within the

organization. Unlike some threat actors, Group 72 does not prefer to use a single RAT as part of their attacks.

Talos researches have observed that the group uses the following RAT malware and have provided detection

coverage against each of these:

● Gh0st RAT (aka Moudoor)

● Poison Ivy (aka Darkmoon)

● HydraQ (aka 9002 RAT aka McRAT aka Naid)

● Hikit (aka Matrix RAT aka Gaolmay)

● Zxshell (aka Sensode)

● DeputyDog (aka Fexel) — Using the kumanichi and moon campaign codes

● Derusbi

● PlugX (aka Destroy RAT aka Thoper aka Sogu)

According to Talos data, HydraQ and Hikit are unique to Group 72 and two other threat actor groups.

While their operational security is very good, patterns in their domains can be identified, for example naming

domains after their intended victim. Talos has observed domains such as companyname.attackerdomain.com and

companyacronym.attackerdomain.com. Analysts have also observed similar patterns in the disposable email

addresses used to register their domains. These slips, among others, allow Talos researchers to follow their

activities. Intriguingly researchers have observed the same email address being used in the activities of this and

two other threat-actor groups. This may suggest that these three groups are indeed one unit, or possibly hint at

shared staff or ancillary facilities.

The following paper is a technical analysis on the functionality of one of the most sophisticated Remote

Administration Tools (RATs) used by Group 72 to conduct cyber-espionage operations – ZxShell (aka Sensocode).

Once the ZxShell RAT is installed on the host it will be used to administer the client, exfiltrate data, or leverage the

client as a pivot to attack an organization’s internal infrastructure. Following is a short list of the types of tools

included with ZxShell:

● Keylogger (used to capture passwords and other interesting data)

● Command line shell for remote administration

● Remote desktop

● Various network attack tools used to fingerprint and compromise other hosts on the network

● Local user account creation tools

For a complete list of ZxShell commands please see the MainConnectionIo section of the paper.

http://tools.cisco.com/security/center/viewAlert.x?alertId=32870
http://tools.cisco.com/security/center/viewAlert.x?alertId=32870
http://tools.cisco.com/security/center/viewAlert.x?alertId=27711
http://tools.cisco.com/security/center/viewAlert.x?alertId=26148
http://tools.cisco.com/security/center/viewAlert.x?alertId=30843

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 3 of 21

The analysts involved were able to identify command and control (C&C) servers, dropper and installation methods,

means of persistence, and identify the attack tools that are core to the RAT’s purpose. In addition, the researchers

used their analysis to provide detection coverage for Snort, CIsco Advanced Malware Protection, and ClamAV.

Distribution and Delivery

ZxShell has been around since 2004 with a lot of versions available in the underground market. Talos analyzed the

most common version of ZxShell, version 3.10. There are newer versions, up to version 3.39 as of October 2014.

An individual who goes by the name LZX in some online forums is believed to be the original author of ZxShell.

Since ZxShell has been around for at least a decade, numerous people have purchased or obtained the tools

necessary to set up ZxShell C&C servers and generate the malware that is placed on the victim’s network. ZxShell

has been observed to be distributed through phishing attacks and dropped by exploits that leverage vulnerabilities

such as CVE-2011-2462, CVE-2013-3163, and CVE-2014-0322.

Analysis of the Main ZxShell Module

To illustrate the functionality of main ZxShell module, let’s take a look at the following sample:

● MD5: e3878d541d17b156b7ca447eeb49d96a

● SHA256: 1eda7e556181e46ba6e36f1a6bfe18ff5566f9d5e51c53b41d08f9459342e26c

It exports the following functions, which are examined in greater detail below:

● DllMain

● Install

● UnInstall

● ServiceMain

● ShellMain

● ShellMainThread

● zxFunction001

● zxFunction002

DllMain

DllMain performs the initialization of ZxShell. It allocates a buffer of 0x2800 bytes and copies the code for the

ZxGetLibAndProcAddr function. To copy memory, the memcpy function is invoked. It is not directly used from

msvcrt.dll but is instead copied to another memory chunk before being called. Finally, the trojan Import Address

Table (IAT) is resolved and the file path of the process that hosts the dll is resolved and saved in a global variable.

http://tools.cisco.com/security/center/viewAlert.x?alertId=24794
http://tools.cisco.com/security/center/viewAlert.x?alertId=29886
http://tools.cisco.com/security/center/viewAlert.x?alertId=32870

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 4 of 21

Install

ZxShell.dll is injected in a shared SVCHOST process. The Svchost group registry key

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost is opened and the netsvc group value data

is queried to generate a name for the service.

Before the malware can be installed a unique name must to be generated for the service. The malware

accomplishes this through querying the netsvc group value data located in the svchost group registry key which is

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost.

At startup, Svchost.exe checks the services part of the registry and constructs a list of services to load. Each

Svchost session can contain multiple shared services that are organized in groups. Therefore, separate services

can run, depending on how and where Svchost.exe is started.

Image 1. Svchost Groups registry key

Svchost.exe groups are identified in the registry key depicted in Image 1. Each value under this key represents a

separate Svchost group and appears as a separate instance when you are viewing active processes. Each value is

a REG_MULTI_SZ value and contains the services that run under that Svchost group. Each Svchost group can

contain one or more service names that are extracted from the following registry key, whose Parameters key

contains a ServiceDLL value:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Service

On a Windows machine, the netsvc group contains names of both existing and non-existing services. ZxShell

exploits this fact by cycling between each of the names, verifying the existence of the real service. The service’s

existence is verified with the ServiceExists function, which attempts to open the relative registry sub-key in

HKLM\SYSTEM\CurrentControlSet\Services. The first service name that is not installed on the system becomes

the ZxShell service name.

http://blogs.cisco.com/wp-content/uploads/image015.jpg

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 5 of 21

A new service is then created using the service parser function ProcessScCommand. ZxShell implemented its own

version of the Windows SC command (Image 2). There are minor differences between the ZxShell implementation

of this command and the original Windows one, but they are irrelevant for the purpose of the analysis. The

command used to install the service is:

sc create <service name> <service name> “%SystemRoot%\System32\svchost.exe -k

netsvcs”

where <service name> is the chosen infected service name.

Image 2. “SC” command used to create the target service, and parsed by “ProcessScCommand” routine

The installed service registry key is opened and the two values under its Parameter subkey are created. These two

values, ServiceDll and ServiceDllUnloadOnStop, are needed for services that run in a shared process.

Before the service is started ChangeServiceConfig is called to modify the service type to shared and interactive.

If the service fails to start then a random service name formatted as netsvc_xxxxxxxx, where xxxxxxxx represent

an 8-digit random hex value, is added to the netsvc group and the entire function is repeated.

ServiceMain

This function is the entry point of the service. It registers the service using the RegisterServiceCtrlHandler Windows

API function. The ZxShell service handler routine is only a stub; it responds to each service request code, doing

nothing, and finally exits. It sets the service status to RUNNING and finally calls the ShellMain function of ZxShell.

ShellMain

The ShellMain function is a stub that relocates the DLL to another buffer and spawns a thread that starts

from ShellMainThreadInt at offset +0xC0CD. The ShellMainThreadInt function gets the HeapDestroy Windows

API address and replaces the first three bytes with the RET 4 opcode. Subsequently, it calls the FreeLibrary

function to free its own DLL buffer located at its original address. Because of this, the allocated heaps will not be

freed. It re-copies the DLL from the new buffer to the original one using the memcpy function. Finally, it spawns

the main thread that starts at the original location of the ShellMainThread procedure and terminates. At this point,

the ZxShell library is no longer linked in the module list of the host process. This is important because if any system

tool tries to open the host process it will never display the ZxShell DLL.

http://blogs.cisco.com/wp-content/uploads/image042.jpg

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 6 of 21

ShellMainThread

This thread implements the main code, responsible for the entire botnet DLL. First, it checks if the DLL is executed

as a service. If so, it spawns the service watchdog thread (Image 3). The watchdog thread checks the registry path

of the ZxShell service every two seconds, to verify that it hasn’t been modified. If a user or an application modifies

the ZxShell service registry key, the code restores the original infected service key and values.

Image 3. The watchdog thread of ZxShell service

The buffer containing the ZxShell Dll in the new location is freed using the VirtualFree API function. A handle to the

DLL file is taken in order to make its deletion more difficult. The ZxShell mutex is created named @_ZXSHELL_@.

ZxShell plugins are parsed and loaded with the AnalyseAndLoadPlugins function. The plugin registry

keyHKLM\SYSTEM\CurrentControlSet\Control\zxplug is opened and each value is queried. The registry value

contains the plugin file name. The target file is loaded using the LoadLibrary API function, and the address of the

exported function zxMain is obtained with GetProcAddress. If the target filename is incorrect or invalid, the plugin

file is deleted and the registry value is erased. That is performed by the function DeleteAndLogPlugin. Otherwise,

the plugin is added to an internal list. Here is the data structure used to keep track of the plugins:

typedef struct _ZX_PLUGINS_STRUCT {

 LPSTR lpStrRegKey; // + 0x00 - ZxShell Plugins registry key string

// (like 'SYSTEM\CurrentControlSet\Control\zxplug')

 DWORD dwUnknown2; // + 0x04 - Unknown DWORD value

 LPVOID lp138hBuff; // + 0x08 - Plugins list

 DWORD dwZero; // + 0x0C - Always zero

 HANDLE hReg; // + 0x10 - Handle to plugin registry key

} ZX_PLUGINS_STRUCT, *PZX_PLUGINS_STRUCT;

http://blogs.cisco.com/wp-content/uploads/image111.png

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 7 of 21

The thread KeyloggerThread is spawned and is responsible for doing keylogging on the target workstation.

Futher analysis of keylogger appears later in the paper. Finally the main network communication

function GetIpListAndConnect is called.

GetIpListAndConnect

This function is at the core of the RAT’s network communication. It starts by initializing a random number generator

and reading 100 bytes inside the ZxShell Dll at a hardcoded location. These bytes are XOR encrypted with the

byte-key 0x85 and contains a list of remote hosts where to connect. The data is decrypted and the remote host list

is parsed and verified using the BuildTargetIpListStruct function. There are three types of lists recognized by

ZxShell: plain IP addresses, HTTP, and FTP addresses.

If the list does not contain any item, or if the verification has failed, the ZxShell sample tries to connect to a

hardcoded host with the goal of retrieving a new updated list. Otherwise, ZxShell tries to connect to the first item

on the list. If ZxShell successfully connects to the remote host, the function DoHandshake is called (Image 4).

This function implements the initial handshake which consists of exchanging 16 bytes, 0x00001985 and

0x00000425, with the server.

The functionGetLocalPcDescrStr (Image 4) is used to compose a large string that contains system information

of the target workstation. That information is the following:

● local hostname

● organization

● owner

● operating system details

● CPU speed

● total physical memory

The string is sent to the remote host and the response is checked to see if the first byte of the response is 0xF4,

an arbitrary byte. If it is, the botnet connection I/O procedure is called through theMainConnectionIo function.

Image 4. The GetLocalPcDescrStr and DoHandshake functions called before starting the command processing

http://blogs.cisco.com/wp-content/uploads/image08.jpg

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 8 of 21

Otherwise, the ZxShell code closes the socket used and sleeps for 30 seconds. It will then retry the connection

with the next remote host, if there is one.

It is noteworthy that this function includes the code to set the ZxShell node as a server. If one of the hardcoded

boolean values is set to 1, a listening socket is created. The code waits for an incoming connection. When the

connection is established a new thread is spawned that starts with theMainConnectionIo function.

MainConnectionIo

The MainConnectionIo function checks if the Windows Firewall is enabled, sets the Tcp Keep Alive value

and Non-blocking mode connection options, and receives data from the remote host through the

ReceiveCommandData function. If the communication fails, ZxShell disables the firewall by modifying the

registry key:

HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\

StandardProfile

Then the connection is retried. The received command is then processed by the ZxShell function with the

ProcessCommand function. The command processing function starts by substituting the main module name

and path in the hosting process PEB, with the one of the default internet browser. The path of the main browser

of the workstation is obtained by reading the registry value (Image 5):

HKLM\SOFTWARE\Classes\HTTP\shell\open\command

Image 5. Our test workstation use Windows Internet Explorer as default browser

This trick renders identification by the firewall more cumbersome. A host firewall will recognize the outgoing

connection as originated by the browser instead of the ZxShell service host process. The browser process always

performs outgoing connections and the firewall shouldn’t block them.

http://blogs.cisco.com/wp-content/uploads/image09.jpg

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 9 of 21

The command processing is straightforward. Following is the list of common commands:

COMMAND MEANING

Help / ? Get help

Exit / Quit Exit and shut down the botnet client

SysInfo Get target System information

SYNFlood Perform a SYN attack on a host

Ps Process service Unix command implementation

CleanEvent Clear System Event log

FindPass Find login account password

FileTime Get time information about a file

FindDialPass List all the dial-up accounts and passwords

User Account Management System

TransFile Transfer file in or from remote host

Execute Run a program in the remote host

SC Service control command, implemented as the Windows one

CA Clone user account

RunAs Create new process as another User or Process context.

TermSvc Terminal service configuration (working on Win Xp/2003)

GetCMD Remote Shell

Shutdown Logout, shutdown or restart the target system

ZXARPS Spoofing, redirection, packet capture

ZXNC Run ZXNC v1.1 -- a simple telnet client

ZXHttpProxy Run a HTTP proxy server on the workstation

ZXSockProxy Run a Sock 4 & 5 Proxy server

ZXHttpServer Run a custom HTTP server

PortScan Run TCP Port MultiScanner v1.0

KeyLog Capture or record the remote computer’s keystrokes. The implementation is a userland keylogger
that polls the keymap with each keystroke.

LoadDll Load a DLL into the specified process

End Terminate ZxShell DLL

Uninstall Uninstall and terminate ZxShell bot DLL

ShareShell Share a shell to other

CloseFW Switch off Windows Firewall

FileMG File Manager

winvnc Remote Desktop

rPortMap Port Forwarding

capsrv Video Device Spying

zxplug Add and load a ZxShell custom plugin

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 10 of 21

This set of functionality allows the operator complete control of a system. Being able to transfer and execute

files on the infected system means the attacker can run any code desired. Further, the keylogging and remote

desktop functionality allows the operator to spy on the infected machine, observing all keystrokes and viewing

all user actions.

Uninstall

Unloads ZxShell and deletes all of the active components. This simply deletes the ZxShell service key from the

Windows registry (using SHDeleteKey Api) and all of the subkeys. Finally, it marks ZxShell main Dll for deletion

with the MoveFileEx Windows API.

ZxFunction001

This function is the supporting functionality for WinVNC. To allow the VNC session to connect, the current network

socket WSAProtcol_Info structure is written to a named pipe prior to calling zZxFunction001. Once the named pipe

has been created, CreateProcessAsUserA is called with the following as the CommandLine parameter:

<systemroot>\\rundll32.exe <zxshell dll name>,zxFunction001 <name of NamedPipe>

ZxFunction001 modifies the current process memory, uses data contained in the named pipe to create a socket,

and then executes the code that sends the remote desktop session to the server controller.

ZxFunction002

This function will either bind the calling process to a port or has the calling process connect to a remote host.

The function is called in the following manner:

<systemroot>\\rundll32.exe <zxshell dll name>,zxFunction002 <name of NamedPipe>

The functionality (connect or bind) depends on the data contained within the named pipe. Unlike ZxFunction001,

this is not used by any of the RAT commands in the ZxShell.dll.

Kernel Device Driver LoveUSD

Apart from user-mode ZxShell droppers mentioned earlier, there is a file (SHA256:

1e200d0d3de360d9c32e30d4c98f07e100f6260a86a817943a8fb06995c15335) that installs a kernel device driver

called loveusd.sys. The architecture of this dropper is different from the others; it starts extracting the main driver

from itself. It adds the SeLoadDriver privilege to its access token and proceeds to install the driver as a fake disk

filter driver. ZxShell opens the registry key that describes the disk class drivers:

SYSTEM\CurrentControlSet\Control\Class\{4D36E967-E325-11CE-BFC1-08002BE10318}

It then adds the “Loveusd.sys” extracted driver name to the upper filter list. In our analyzed sample the

“Loveusd.sys” driver is installed with the name “USBHPMS” (Image 6). Finally the driver is started using the

ZwLoadDriver native API.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms741675%28v=vs.85%29.aspx

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 11 of 21

The ZxShell driver starts by acquiring some kernel information and then hooking “ObReferenceObjectByHandle”

API. Finally it spawns two system threads.

The first thread is the “communication” thread. ZxShell employs a strange method for communication: it hooks the

NtWriteFile API and recognizes five different special handle values as commands:

● 0x111111111 -- Hide “Loveusd” driver from the system kernel driver list

● 0x22222222 -- Securely delete an in-use or no-access target file-name

● 0x44444444 -- Unhook the ZwWriteFile API and hook KiFastCallEntry

● 0x55555555 -- Remove the ZxShell Image Load Notify routine

● 0x88888888 -- Set a special value called “type” in Windows registry key

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\DriverMain

The second Loveusd system thread does a lot of things. Its principal duties are to create the ZxShell main DLL in

“c:\Windows\System32\commhlp32.dll” and to install the Kernel “Load Image Notify routine”. The code then tries to

kill each process and service that belongs to the following list of AV products:

● Symantec Firewall

● Norton

● ESET

● McAfee

● Avast

● Avira

● Sophos

● Malwarebytes

Next, the ZxShell Load-Image Notify function prevents the AV processes from restarting.

The installation procedure continues in the user-mode dropper. The ZxShell service is installed as usual, and the

in-execution dropper is deleted permanently using the special handle value 0x22222222 for the WriteFile API call.

This handle value is invalid: all the Windows kernel handle values are by design a multiple of four. The ZxShell

hook code knows that and intercepts it.

ObReferenceObjectByHandle is a Kernel routine designed to validate a target object and return the pointer to its

object body (and even its handle information), starting from the object handle (even the user-mode one). The hook

installed by ZxShell implements one of its filtering routines. It filters each attempt to open the ZxShell protected

driver or the main DLL, returning a reference to the “netstat.exe” file. The protection is enabled to all processes

except for ones in the following list: Svchost.exe, Lsass.exe, Winlogon.exe, Services.exe, Csrss.exe, ctfmon.exe,

Rundll32.exe, mpnotify.exe, update.exe.

If the type of object that the system is trying to validate is a process, the hook code rewrites the configuration data

of the ZxShell service in the Windows registry.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 12 of 21

Image 6. The test Windows XP workstation trying to open the sys file of ZxShell LoveUSD driver

The last type of Kernel modification that ZxShell rootkit performs is the system call dispatcher (KiFastCallEntry)

hook. In this manner, ZxShell is able to completely hide itself, intercepting the following Kernel API calls:

ZwAllocateVirtualMemory, ZwOpenEvent, ZwQueryDirectoryFile, ZwWriteFile, ZwEnumerateKey,

and ZwDeviceIoControlFile.

Command and Control Server

Sample (SHA256: 1eda7e556181e46ba6e36f1a6bfe18ff5566f9d5e51c53b41d08f9459342e26c) is configured to

act as a server. The symbol “g_bCreateListenSck” is set to 1. This means that, as seen above, the ZxShell Dll is

started in listening mode. It connects to the first remote C&C that tries to contact it and succeeds in the handshake.

The encrypted IP address is “127.0.0.2” (used as loopback) and no connection is made on that IP address (due to

the listening variable set to 1).

Malware Package

Talos analysts used the ZxShell package for version 3.10 (SHA256:

1622460afbc8a255141256cb77af61c670ec21291df8fe0989c37852b59422b4).The convenient thing about this is

that the C&C panel worked with any version, 3.10 and above. The buttons are all in Chinese but with the help of

Google Translate and keen detective skills (read: button clicking), analysts deciphered the functionality.

http://blogs.cisco.com/wp-content/uploads/image026.jpg

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 13 of 21

When you start the controller, you need to set the port you want to listen on and if you’ve set a password,

add it here.

Image 7. Setting up the C&C panel

Once an infected machine connects, you see its information displayed in a selection box at the top (Image 7).

There are some built in functions on the side for the more common features. These include remote desktop,

webcam spying, remote shell, and file management. You can also select a host and type help for a full list of

commands.

http://blogs.cisco.com/wp-content/uploads/image06.png

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 14 of 21

Image 8. ZxShell versions 3.1 and 3.2 running concurrently

Researchers infected the same machine with two different versions of ZxShell (Image 8). Sending the help

command for each, you can see the extra features added between version 3.1 and 3.2.

http://blogs.cisco.com/wp-content/uploads/image00.png

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 15 of 21

Image 9. New features in ZxShell version 3.2

Keylogging, ZXARPS (IP and URL spoofing), and SYNFlood are some of the interesting features added to

version 3.2 (Image 9).

Version Information

Talos analysts wrote a script to extract version info from the available binaries .

● 3.100 : 914

● 3.200 : 152

● 3.210 : 118

● 3.220 : 14

● 3.390 : 3

http://blogs.cisco.com/wp-content/uploads/image07.png

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 16 of 21

In versions 3.1 - 3.21, the configuration info is XOR-encoded with 0x85. This configuration info can be changed

with a tool included in the ZxShell package.

Image 10. Variations in versions 3.22 and 3.39

In versions 3.22 and 3.39 the routine changes (Image 10). The new XOR encoding byte is 0x5B. The data is

stored in the last 0x100 bytes of the file. The first eight bytes of data are static. Then there is the dll install name,

the domain, and the port.

Extracted URL Analysis

Knowing the obfuscation routines for this data, Talos researchers wrote a script to extract the URLs / IPs and

ports stored.

The most common ports used are: 80, 1985, 1986, and 443. 1985 is the default port for the malware, 1986 is the

lazy variation of that port. Ports 80 and 443 are the default ports for HTTP and HTTPS traffic. The next most

common is port 53. This is used in some of the newer 3.22 and 3.39 samples. After that, the count for each port

starts declining sharply. The choices are interesting though, many correspond to what looks like the birth year of

the controller (i.e., years in the late 1980s and early 1990s), and others seem to match the year the malware was

launched (i.e., in the 2000s, relatively close to the current year).

Since this malware dates back to around 2004, there are many samples containing C&C URLs from the 3322.org

page. This page used to offer no-IP type hosting and was so widely used by malware authors that Microsoft did a

takedown in 2012. A similar service, vicp.net, is also seen in many of the domains.

In the malware, if a domain is configured, it will retrieve domain.tld/myip.txt. This file contains a list of IP addresses

for the infected machine to connect back to. Otherwise, if an IP address is configured, it will connect directly to that

IP address.

http://blogs.cisco.com/wp-content/uploads/image05.png

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 17 of 21

Cloning the ZxShell Server

Talos researchers have written a simple C++ ZxShell Server that implements the communication and

the handshake for versions 3.10 and 3.20 of the ZxShell DLL. The implementation is quite simple: After the

handshake, two threads that deal with data transfer are spawned. Images 11 and 12 show the Server and

the ZxShell Keylogger in action:

Image 11. The server has accepted a connection from a remote host

Image 12. The ZxShell keylogger has captured two user passwords (gmail.com and amazon.com)

Image 12 shows a very interesting feature of the ZxShell keylogger: once installed and activated, the keylogger

is able to catch each password that the user inserts in the login box of each website (like Google, Amazon and

so on…). This makes the keylogger a valuable weapon for the attackers. They will be able to steal and resell the

sensitive data of each victim in the underground market.

http://blogs.cisco.com/wp-content/uploads/image031.jpg
http://blogs.cisco.com/wp-content/uploads/image10.jpg

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 18 of 21

Conclusion

Advanced persistent threats will remain a problem for companies and organizations of all sizes, especially those

with high financial or intellectual property value. Group 72’s involvement in Operation SMN is another example of

the type of damage that can be done if organizations are not diligent in their efforts to secure their

networks. ZxShell is one sample among several tools that Group 72 used within their campaign.

ZxShell is a sophisticated tool employed by Group 72 that contains a wide range of functionality. Its detection and

removal can be difficult due to the various techniques used to conceal its presence, such as disabling the host anti-

virus, masking its installation on a system with a valid service name, and by masking outbound traffic as originating

from a web browser. While other techniques are also utilized to conceal and inhibit its removal, ZxShell’s primary

functionality is to act as a Remote Administration Tool (RAT), allowing the threat actor to have continuous

backdoor access to the compromised machine.

As Talos researchers demonstrate, ZxShell is an effective tool that can be ultimately used to steal user credentials

and other highly valuable information. The threat posed by ZxShell to organizations is one that cannot be

ignored. Organizations with high financial or intellectual property value should take the time to ensure their security

requirements are met and that employees are educated about the security threats their organizations face.

Protecting Users From These Threats

The Talos Security Intelligence and Research Group (Talos) is made up of leading threat researchers supported by

sophisticated systems to create threat intelligence for Cisco products that detect, analyze, and protect against both

known and emerging threats.

Because Talos maintains the official rule sets of Snort.org, ClamAV, SenderBase.org, and SpamCop, Talos has

updated the ClamAV names and Snort Signature IDs to detect Group 72 RAT malware as follows:

● Gh0stRat — Win.Trojan.Gh0stRAT, 19484, 27964

● PoisonIVY / DarkMoon — Win.Trojan.DarkMoon, 7816, 7815, 7814, 7813, 12715, 12724

● Hydraq — Win.Trojan.HyDraq, 16368, 21304

● HiKit — Win.Trojan.HiKit, 30948

● Zxshell — Win.Trojan.Zxshell, 32180, 32181

● DeputyDog — Win.Trojan.DeputyDog, 28493, 29459

● Derusbi — Win.Trojan.Derusbi, 20080

Talos is the primary team that contributes threat information to the Cisco Collective Security Intelligence (CSI)

ecosystem, which also includes the Security & Trust Organization, Managed Threat Defense and Security

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 19 of 21

Research and Operations (SR&O). Cisco CSI is shared across multiple security solutions and provides industry-

leading security protections and efficacy. The following Cisco solutions work together to protect against Group 72:

Cisco Advanced Malware Protection (AMP) is ideally suited to detect the sophisticated malware used by this

threat actor.

Cisco Cloud Web Security (CWS) or Cisco Web Security Appliance (WSA) prevent access to malicious

websites, including watering hole attacks, and detect malware used in these attacks.

The Network Security protection of Cisco Intrusion Prevention Systems (IPS) and Cisco Next-Generation

Firewalls (NGFW) have up-to-date signatures to detect malicious network activity by threat actors.

Cisco Email Security Appliance (ESA) can block spear phishing emails sent by threat actors as part of their

campaign.

Appendix A: Snort Rules for ZxShell

Initial connection from the infected computer’s perspective – after it connects to the controller.

RECV: 85190000250400000000404000000000

SEND: 86190000040100006666464000000000

RECV: 4edf9340780100000000000000000000

SEND: 00000000000000000000000000000000

The rules are on the first eight bytes of the first two packets. They are hard coded in the binaries. The rest of the

bytes are variable (for example, 66664640 is a floating point version number of ZxShell).

Snort rules:

● sid:32180

● sid:32181

These rules have been released in our community ruleset and can be downloaded and used directly, or

via pulledpork from Snort.org

http://www.cisco.com/c/en/us/support/security/amp-firepower-software-license/tsd-products-support-series-home.html
http://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
http://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
http://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
http://www.cisco.com/c/en/us/products/security/asa-next-generation-firewall-services/index.html
http://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.snort.org/downloads
https://code.google.com/p/pulledpork/

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 20 of 21

Appendix B: ClamAV Signatures for ZxShell

● Win.Trojan.ZxShell-11

● Win.Trojan.ZxShell-12

● Win.Trojan.ZxShell-13

● Win.Trojan.ZxShell-14

● Win.Trojan.ZxShell-15

● Win.Trojan.ZxShell-16

● Win.Trojan.ZxShell-17

● Win.Trojan.ZxShell-18

● Win.Trojan.ZxShell-19

● Win.Trojan.ZxShell-20

● Win.Trojan.ZxShell-21

● Win.Trojan.ZxShell-22

● Win.Trojan.ZxShell-23

● Win.Trojan.ZxShell-24

● Win.Trojan.ZxShell-25

● Win.Trojan.ZxShell-26

These signatures are available within the ClamAV database. Please run freshclam to ensure you stay updated

with the latest coverage.

©2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 21 of 21

Appendix C: List of Memory Offsets for Some ZxShell Functions

Below is a list for some ZxShell functions for sample SHA256:

1eda7e556181e46ba6e36f1a6bfe18ff5566f9d5e51c53b41d08f9459342e26c:

FUNCTION NAME BRIEF DESCRIPTION OFFSET

ZxGetLibAndProcAddr ZxShell GetProcAddress implementation 0x12CDA

CopyMemoryFromNewMsvcrt ZxShell memory copy routine 0x12C4C

ServiceExists Get if a service is installed in the system or not 0x0A7C7

ProcessScCommand ZxShell “SC” command implementation 0x0E3EF

AnalyseAndLoadPlugins Parse the installed plugin list and load each one of them 0x0127B7

DeleteAndLogPlugin Delete a corrupted plugin and log the problem 0x012597

KeyloggerThread ZxShell keylogger implementation 0x0D591

GetIpListAndConnect Analyse the IP list inside the ZxShell PE and tries to connect 0x011496

BuildTargetIpListStruct Build remote server Ip list structure 0x11419

DoHandshake Perform initial connection handshake 0xB8E8

GetLocalPcDescrStr Build a string containing the target workstation data 0x0B627

MainConnectionIo ZxShell main connection I/O routine 0x1126C

ReceiveCommandData Receive each byte from the socket until a newline char 0x016DF

ProcessCommand Main ZxShell command processing routine 0x10C2B

Appendix D: Other Collateral

Here is a non-exhaustive list of ZxShell samples that were analyzed for this report.

Here is a list of Domains organized by port.

Printed in USA 11/14

http://blogs.cisco.com/wp-content/uploads/zxshell-hash-list.txt
http://blogs.cisco.com/wp-content/uploads/zxshell-domains-by-port.txt

