
Function Identification and Recovery Signature Tool

Angel M. Villegas
Cisco Systems Inc., Talos

anvilleg@cisco.com

Abstract
Reverse Engineering benign or malicious samples can
take a considerable amount of time. Reversing many
samples, or tracking changes in malware families, can
cause an analyst to see similar or even the same
functions used over and over. The similar, or same,
functions could be seen recently, allowing the analyst
to recall the metadata they associated with it.
However, most likely, the disassembly will be familiar
but the analyst will need to review the function to
associate metadata with it. Broadening this to a team
setting, time and effort is required to keep everyone’s
metadata sync-ed up between the same or similar
samples. Reverse engineering the same routines is a
waste of time and can be reduced by applying the right
reverse engineering collaborative framework. In this
paper a solution is provided for transferring
knowledge to similar functions by introducing a new
reverse engineering tool, named FIRST (Function
Identification and Recovery Signature Tool), to reduce
analysis time and enable information sharing.

Keywords: Reverse engineering, Hex-Rays IDA,
disassembly, Python, reverse engineering
collaboration, client-server framework, FIRST,
Function Identification and Recovery Signature Tool

1. Introduction

With the computer security industry expanding,
more occupations leverage reverse engineering:
computer researcher, cyber security analyst,
exploitation developer, vulnerability analyst, etc.
Though the day to day of each occupation can differ,
many find themselves looking at source code for
scripting languages, disassembly for compiled
languages, or both. The leading industry tool for
analyzing disassembly is Hex-Rays’ IDA. IDA is a
multi-processor disassembler and debugger that allows
users to analyze software, associate metadata with
routines within the software and saves progress to a

project file (IDB). The IDB allows users to share their
analysis via sending others their IDB file.

The ability for users to markup functions with
useful information like the function name, its
prototype, comments, etc. greatly impacts the ability
to analyze software quickly and efficiently. Though
IDA has many features and supports developer created
plugins to expand its capabilities, it does not provide
an easy way to work with others.

Analyzing disassembly for a given binary is
typically an individual task versus a group effort.
However, several reverse engineers can work together
to quickly analyze a binary or others could benefit
from the knowledge gleamed and documented by
another analyst. An IDA IDB contains function
annotations, but those annotations cannot be shared or
restored outside of the IDB. Several use cases exist for
the need to share work among analysts:

• User A analyzes a function in one sample and re-
analyzes it in another sample. Time is wasted
either via the user re-analyzing the routine or
attempting to find where the function was
analyzed before.

• User A and User B analyze the same function.
Duplication of effort occurs and time is wasted.

• A team is working together to analyze software.
Team members need to work hard to keep
synchronized with everyone’s annotations.

• User A and User B are using different versions of
IDA. Newer versions of IDA create IDBs that
cannot be distributed and used by older versions
due to version restrictions. Completed work is
inaccessible to users resulting in wasted time.

Other tools exist that provide a subset or similar
functionality to IDA1, whereas some analysts use
proprietary solutions, scripts, and/or procedures to
accomplish similar results. However, much like IDA,
they do not provide an easy way to add, update, or
synchronize function annotations. Function

																																																													
1	Radare2, Binary Ninja, Online Disassembler (ODA)
to name a few	

Identification and Recovery Signature Tool (FIRST) is
framework. This paper focuses on the client IDA
plugin and alludes to the standalone API that allows
users to add function metadata to a repository and
search the repository for function metadata similar to
the function(s) they are searching for. A function's
name, prototype, and repeatable comment are saved
and made available for others.

2. Related Work

There has been several attempts to create a full
collaborative framework for IDA and its user base. As
of today, many of these projects are abandoned, no
longer actively developed and thus do not support
newer versions of IDA. Additionally, the IDA
software development kit (SDK) and exposed Python
application program interface (API) are actively being
developed. Each new version of IDA supplies
developers with more ways to integrate with IDA,
however, the functionality for many of the related
works was not available at the time of their creation. A
major change occurred from IDA 6.8 to IDA 6.9 when
the creators migrated to using Qt 5.4.1 instead of Qt
4.8.4, thereby forcing all developers using IDAPython
with PySide to update their plugins to use PyQt5 [1].

The IDA Pro Book 2nd Edition showcases the
author’s (Chris Eagle) collaboration tool, collabREate
[2]. The project is open source and hosted on GitHub2,
but has not been updated since May
2014. collabREate uses a client-server model that
stores data out-of-band (external from the IDB). The
server stores projects that allow users to enter/exit
projects to synchronize efforts for the samples in the
project. The framework broadcasts messages and
updates to each client connected to the server to force
synchronization. Complications arise when analysts
disconnect from the server update or add content and
then reconnect. The server contains a management
application to see server connections, manage users
and projects. collabREate supports IDA 4.9 through
6.5 (including IDA freeware 5.0) by leveraging the
SDK and compiling plugin versions for each platform
and architecture. Users are required to setup a
Java/JDBC and PostgreSQL or MySQL database.
Users cannot opt-out of any updates, either they get all
updates by entering the project or they get no updates
by exiting the project.

CrowdStrike released a free Crowdsource Reverse
Engineering (CrowdRE) service June 2011 at RECon3

																																																													
2	https://github.com/cseagle/collabREate	
3	
https://recon.cx/2012/schedule/attachments/51_recon-
crowdre-final-120621174609-phpapp02.pdf	

[3]. CrowdRE uses a client-server model too,
however, it is a proprietary product of CrowdStrike.
The IDA plugin component is a compiled binary for
each platform and architecture supported. The server
component is a service offered by CrowdStrike and
doesn’t allow users to setup their own server or
environment in a closed network. The service had
great promise when it debuted; however, the service
has been unavailable for quite some time.

3. Framework Description

FIRST is an open source client-server framework.
It was designed to reduce duplication of effort,
decrease time wasted by synchronization, provide a
workflow with minimal additional overhead, and
integrate into existing disassemblers, scripts, and/or
procedures. The client side includes an IDAPython
plugin and a standalone API. The server side includes
a web site, a representational state transfer (REST)
API, and a framework to allow extensibility via a
modular plugin design. FIRST provides users with a
framework to:

• Add, modify, delete their function annotations

within FIRST
• Search for function annotations within FIRST
• Update applied function annotations from FIRST
• View a function’s metadata history within FIRST
• Develop server side plugins (Engines and DBs) to

expand FIRST’s functionality

There are a couple of design decisions that affect

the requirements for different components of the
framework. The client side standalone API is a Python
2.7 module that requires Python Requests module (can
be installed via “pip install requests”). Python 2.7 was
chosen since IDA leverages Python 2.7 and to provide
a way for earlier versions of IDA to interact with the
FIRST server. The client side IDAPython plugin also
requires the Python Requests module, and was created
as an IDAPython plugin instead of a compiled plugin
to prevent the need for different builds for each
platform and architecture. An IDAPython plugin also
brings a sense of openness, making it easier for people
to contribute to the project or even adapt FIRST to
their environment. To minimize the workflow and
prevent varying levels of functionality the minimum
version of IDA is 6.9 sp1 (released 22 Feb. 2016). The
freeware version of IDA (currently 5.0) does not
include IDAPython, thus it is not supported. As of the
Beta release, FIRST server side framework leverages
Apache, Python, Django, and MongoDB.

The complete source for FIRST is hosted on
GitHub. The quickest way to get going is to use the

publicly available FIRST server (http://first-plugin.us)
and install the IDAPython plugin. Installation of the
plugin requires the user to add the first.py file to their
IDA plugins directory (ex. for Windows 10,
C:\Program Files (x86)\IDA 6.9\plugins) and install
the Requests Python module. Users need to register on
the website before they can start using FIRST.
Currently, user registration is handled by OAuth2
services. For the Beta version of FIRST, only Google
OAuth2 is supported. FIRST only obtains the user’s
email address and name from the OAuth service. Once
registered, the user receives a unique API key that is
required by the standalone API and IDAPython
plugin. If FIRST is not configured, the user will be
presented with a Welcome screen. The welcome
screen asks the user to provide FIRST connection
details and their API key. Before applying the
configuration to FIRST users can test if the
configuration connects to the server.

Figure 1. FIRST welcome screen

The installation is now complete. The

configuration can be modified at any time by opening
the plugin management window (IDA Menu: Edit >
Plugins > FIRST) and selecting “Configuration” from
the left panel.

The IDAPython plugin allows users to add their
annotations (function's name, prototype, and IDA
repeatable function comment) to the server. With the
plugin, a user can add one or more function
annotations at a time, search for existing metadata that
is similar to the functions being queried, view function
metadata history, delete metadata the user has created
and check for updated versions of the metadata
currently applied in their IDB. The plugin integrates
with IDA to provide the user with a graphical user

interface (GUI) to perform these operations, send the
data required by the server, display results back to the
user, and apply metadata to the IDB. The plugin tries
to add as little additional overhead to the reversing
process by not requiring the end user to perform
additional steps when adding their metadata to the
IDB. Instead, an end user will perform their analysis
as usual, making sure to leverage repeatable function
comments, and then specify which functions they want
to add to FIRST. All features are user driven (on-
demand) instead of forcing automatic synchronization.
Operations are available via the right click menu in
IDA’s Disassembly View window.

Figure 2. Right click menu: FIRST operations

Each operation will interact with the user through

GUI dialog boxes and output summarization of results
or errors to the Output Window. The IDAPython
plugin works with various threads within IDA to
interact with the server, the underlying IDB, and the
user via GUIs while ensuring critical non thread-safe
functionality is executed within the context of IDA’s
main thread. Each operation will be discussed further
in the Evaluation section.

Figure 3. FIRST plugin diagram

The second part of the client side component is a

standalone Python module that implements
functionality to expose the REST API to the user or
scripts utilizing the module. IDA is not the only
disassembler publicly available. The Python module
was facilitated to enable FIRST integration with other
software systems. Developers in different
environments will be able to interface with the server
in their own environments, even if that environment
does not include IDA.

Figure 4. FIRST server diagram

The server side component is a framework

incorporating a web service for user registration and
interacting with the plugin. Once registered, the user
will receive a unique API key that is required by the
plugin. The plugin will interact with the server via an
exposed REST API. Any data sent to the server will
enter the modular framework. The framework includes
several components: [1] a web REST API (responsible
for providing a RESTful API to the client, validating

input data, and returning results or error messages to
the client) [2] an authentication module (validate
logins via the web user interface and/or checking API
keys) [3] an Engine manager (responsible for
interacting with the various installed engines to add
new function metadata or retrieve it), [4] a database
(DB) manager (responsible for providing a layer of
abstraction for engines to interact with various
databases without implementing specific functionality
in the engine themselves).

The framework supplies an abstract
implementation of a DB object, allowing developers to
create their own DB modules that can be incorporated
with the engines. The default installation of FIRST
includes a DB module for getting data from the
database FIRST uses to store all of its information.
Developers are not required to only use FIRST’s
database but can leverage completely different
databases for storing data. This allows FIRST to be
integrated into pre-existing workflows without
engineering a completely new system.

The framework supplies an abstract
implementation of an Engine object, allowing
developers to create their own engines to expand
and/or enrich FIRST's capabilities. The Engine
Manager will dynamically load installed engines.
Once installed, an engine will be provided with any
incoming function metadata for processing. Adding to
the engine's system for storing relevant information
(whether that leverages a DB or another means of
storage). Engines are given very specific input and
expect specific output for the Engine Manager to
handle requests from the client. The abstract Engine
Class defines what methods and class variables are
required by the Engine Manager and includes many
wrapper functions to ensure correct data is returned to
the Engine Manager. Upon initialization, the Engine
Manager will initialize all installed engines by calling
their constructors and passing them the DB manager.
If the DB manager contains the database connections
required by the engine then the engine is operational
and added to the list of engines the framework will use
for processing requests from the client. However, if
the engine does not have the required connections or
dependencies, then the engine will be excluded from
the framework's list of engines. The Engine is
implemented by the developer, and can use any system
for finding similar function as long as it implements
two required methods (Add and Scan as labeled in the
diagram). The framework treats every engine as a
blackbox that expects predefined input and outputs
predefined data.

Figure 5. FIRST engine manager diagram

The Beta version of FIRST comes with three

Engines built-in: Exact Match, Mnemonic Hashing,
and Basic Masking.

Exact Match relies on all opcodes associated with
the function. The opcodes are used to create a
SHA256 hash for quicker lookups.

Figure 6. Engine: Exact matching logic

Mnemonic Hashing relies on converting the

opcodes associated with the function to their
respective disassembly. FIRST currently uses
distorm3 to disassemble Intel x86 and x64 opcodes.
Once the disassembly is obtained, all operands are
stripped away, leaving only the function mnemonics.
Those mnemonics are used to create a SHA256 hash
for quicker lookups.

Figure 7. Engine: Mnemonic hashing logic

Basic Masking relies on converting the opcodes
associated with the function to their respective
disassembly. Then the disassembly is normalized by
removing ESP/EBP/RSP offsets, absolute calls,
relative calls and jump offsets, and global offsets.

Figure 8. Engine: Basic masking logic

4. Evaluation

Registration is required to use FIRST. If a private
FIRST server is setup then substitute http://first-
plugin.us for the location of the private FIRST server.
By default FIRST uses Google’s OAuth 2 service to
register users. Once an account is created, via
providing a handle, an API key is assigned to the user.
If using a private FIRST server, then adapt the
authentication module to fit the environment. After the
API key is received, the user can configure FIRST
either through the Welcome screen (if FIRST is not
configured) or through the plugin management
window (accessible via Edit > Plugins > FIRST). With
the plugin configured, the user can access several
operations via the right click menu:

• Check FIRST for this function

Queries FIRST for the function associated with
the current location of the cursor

• Query FIRST for all function matches
Searches FIRST for all defined functions that are
more than just a JMP wrapper function

• Add this function to FIRST
Adds the function associated with the current
location of the cursor to FIRST

55 89 E5 53 57 56 83 E4 F8 83 EC 40
8B 45 08 C7 44 24 24 C5 5D 00 00 89
44 24 20 66 C7 44 24 2A F5 27	

→		SHA256	

• Add multiple functions to FIRST
Allows the user to select multiple functions to
upload to FIRST in a single operation. The
function list contains all functions that are more
than just a JMP wrapper function

• Apply updated metadata from FIRST
Gets all functions with FIRST metadata applied in
the IDB, queries the server for the latest
annotations, and applies annotations to the IDB

• View metadata history
Displays the annotation changes over the lifetime
of the function selected

4.1. Checking FIRST for a function, check for
multiple functions at once

The IDAPython plugin allows the user to check
FIRST for a single function or multiple functions at
once. The GUI organizes functions into a tree
structure. For checking a single function, the top level
represents the metadata that matched. The user is
shown the function name, rank, similarity, prototype,
the engines that matched, and the creator of the
metadata. Expanding the tree will show the comment
associated with the function. Checking multiple
functions at once will result in the same tree structure,
however, the top level represents the function address
and current function name in the IDB, with the
number of matches. Expanding the tree will show the
same information that was available when checking a
single function.

Figure 9. Check a Single Function

Figure 10. Check Multiple Functions at Once

Figure 11. Checking FIRST network flow

4.2. Add function to FIRST, upload multiple
functions at once

Uploading a single function will render the GUI
on the left, displaying the annotations that will be sent
to FIRST. The form is not editable and will require the
user to close the dialog and edit the metadata in IDA.
Adding multiple functions at once will list all
functions that can be added to FIRST, the user will be
able to select all the functions (via the checkbox) or
click each function they want to add to FIRST. If a
function’s metadata has been added to FIRST and has

PL
U
G
IN
	 SERVER	

Check for function(s)

On Failure

{'functions' : {
 <client_id> : {
 'architecture' : <String>,
 'opcodes' :
 <String:base64 data>,
 'apis' : <String>
 },
 ...
 }
}

{'failed' : false,
 'result' : {
 'engines' : {
 <String:engine name> :
 <String:description>,
 },
 'matches' : {
 <client_id> : [
 {'id' :
 <String:metadata id>,
 'similarity' :
 <Float:0.0 - 100.0>},
 'engine' :
 [<String:engine_name>, …],
 'name' : <String>,
 'prototype' : <String>,
 'comment' : <String>,
 'rank' : <Integer>,
 'creator' :
 <String:handle>,
 },
 ...
]
 ...
 }
 }
}

{'failed' : true,
 'msg' : <String>}

On Success

changed since the last upload then the row’s
background will be a light red color.

Figure 12. Add a Single Function

Figure 13. Add Multiple Functions at Once

Figure 14. Adding to FIRST network flow

4.3. Updating metadata from FIRST

There is no GUI associated with updating. A user
simply right clicks and selects “Apply updated
metadata from FIRST.”

PL
U
G
IN
	 SERVER	

Adding function(s)

On Failure

{'md5' : <String>,
 'crc32' : <32bit int>,
 'functions' : {
 <client_id> : {
 'architecture' : <String>,
 'opcodes' :
 <String:base64 data>,
 'name' : <String>,
 'prototype' : <String>,
 'comment' : <String>,
 'apis' : <String>,
 'id' : <String:Optional>
 },
 ...
 }
}

{'failed' : false,
 'result' : {
 <client_id> : <String:ID>
 ...
 }
}

{'failed' : true,
 'msg' : <String>}

On Success

Figure 15. Updating metadata network flow

4.4. Viewing changes to metadata

When metadata from FIRST has been applied to a
function in the IDB, a user will be able to right click
and select “View metadata history.” This view is also
available in other dialog boxes via right clicking a row
of metadata.

Figure 16. Metadata Revision History

Figure 16. Metadata history network flow

5. Conclusion

Reverse Engineering and all related efforts are
time consuming endeavors. That fact alone and the
pure number of new benign and malicious samples
makes time a valuable resource. To save the time and
effort analysts use requires more automation and tools
to leverage knowledge.

FIRST’s modular framework allows developers to
create new Engine components and integrate them into
the framework to gain better detection of similar
functions. These user developed Engines can be added
to the project and made available to everyone or
controlled/maintained privately. Additionally,
developers can create custom database (DB)
components to allow access to other resources (local
or external from the FIRST installation). The pairing
of Engine and DB modules allow customization not
provided by other known prior alternative solutions.

It is the hope of the creators of FIRST to allow
users to quickly and easily reduce their workload
and/or the amount of time analysts requires by
enabling:

PL
U
G
IN
	 SERVER	

Updating metadata

On Failure

{'metadata' :
 [<String:metadata id>, …]
}

{'failed' : false,
 'result' : {
 <String:metadata id> : {
 'creator' :
<String:handle>, 'name' : <String>,
 'prototype' : <String>,
 'comment' : <String>,
 'rank' : <Integer>
 },
 ...
 }
}

{'failed' : true,
 'msg' : <String>}

On Success

• Users with different version of IDA (6.9 and
higher) to share annotations without encountering
issues due to version changes.

• Users to retrieve functions they have already
analyzed in another sample, preventing
duplication of work and making synchronization
efforts easier.

• Anyone to host their own instance in a public or
private space, thereby allowing collaboration on
small to large scales.

• Users of varying levels of skill to gain helpful
information from community contributions.

• Users to leverage FIRST outside of IDA, gaining
the ability to utilize its server side capabilities,
thereby removing the restriction of information
and allowing pre-existing systems to use FIRST’s
framework.

6. Acknowledgements

This project was made possible by Talos’
Malware Research Team at Cisco Systems, Inc. Any
opinions, findings, or conclusions are those of the
author and does not necessarily reflect the views of the
author’s employer.

7. References

[1] Diederen, Arnaud. “IDAPython: migrating PySide code
to PyQt5.” Hex Blog: State-of-the-art code analysis. Hex
Rays, 30 Dec. 2015. Web. 5 July 2016.
http://www.hexblog.com/?p=975

[2] Eagle, Chris. “The collabREate Plugin for IDA Pro.“ No
Starch Press. 3 Sep. 2008. Web. 5 July 2016.
http://www.idabook.com/collabreate/

[3] Geffner, Jason. “Streamlining the Reverse Engineering
Process with CrowdRE.” CrowdStrike. 22 June 2012. Web.
5 July 2016.
https://www.crowdstrike.com/blog/streamlining-reverse-
engineering-process-crowdre/

