
select

B E L K I N

2

Console

1

THE BELKIN
E SERIES

OMNIVIEW
2-PORT KVM

SWITCH

H A C K I N G

BY IAN PAYTON, SECURITY ADVISORY EMEAR

page 2 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

INTRODUCTION
Too frequently security professionals only consider software
vulnerabilities when considering the risks of connecting
devices to their networks and systems. When it comes to
considering potential risks of connected devices and the
Internet of Things, not only must security professionals
consider potential vulnerabilities in the software and firmware
of these systems, but also physical vulnerabilities in hardware.

Tampering with hardware is method by which
attacker can physically modify systems in order
to introduce new malicious functionality, such as
the ability to exfiltrate data without resorting to
exploiting software based vulnerabilities.

In this paper, we demonstrate the possibility of
modifying a standard KVM switch to include
an Arduino based key logger. We show that
this can be achieved using off-the-shelf tools
and components by anyone with a minimum
of electronic engineering and programming
knowledge.

KVM switches are hardware devices frequently
used in operational environments that allow
a user to easily switch between and control
multiple computers from a single keyboard,
monitor, and mouse.

They fall into some broad categories:

 • Entry-level domestic and SoHo KVM switches
operating from a physical button with little
scope for hacking.

 • 'Hotkey' KVM switches that allow the user
to switch between attached computers by
entering a combination of key presses. The
inclusion of a microcontroller to identify a
hotkey press suggests that these devices may
be subverted as a key-logger.

 • Enterprise level KVM switches offering tighter
system integration. These are likely to be
significantly more complex and may be running
small, real-time operating systems with the
consequent opportunities for hacking.

Here we describe the analysis of a KVM switch
from the second category. Our choice was inspired
by a client engagement where a client noticed an
RJ45 port on their KVM switch and asked us to
assess the security of the device.

The Belkin E Series OmniView 2-Port KVM
switch is a domestic/SoHo unit that provides
hotkey switching. This was selected as being
representative of devices in this category so the
outcome of any analysis is expected to be broadly
applicable across similar devices from other
manufacturers. Low cost units can be found on
eBay (less than £10).

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com

page 3 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

OPENING THE CASE
Inside the case a set of components is revealed, including the following:

MICROCONTROLLER PIC16C57C
 • This is an OTP PIC microcontroller made by Microchip Technology. This can be seen in the

picture below as the larger chip towards the right of the PCB at the rear next to the cylindrical
black buzzer.

 • As can be seen from the picture, the microcontroller is in a DIP package and is mounted in
a socket. This makes it particularly easy to remove the microcontroller to help with reverse
engineering.

5 X 74HC4053D
 • These are triple analogue dual multiplexers made by NXP. A dual multiplexer is capable of

switching a single input to one of two outputs so these five devices likely form the core logic
for switching the PS/2 keyboard and mouse signals between one of the four output ports.

Belkin E Series OmniView 2-Port KVM Switch

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com

page 4 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

THE PIC16C57C MICROCONTROLLER

Belkin E Series OmniView 2-Port KVM Switch Internals

FIRMWARE ANALYSIS
PROGRAMMING AND
VERIFICATION PROTOCOL

The PIC16C57C Programming/Verify specification
outlines how to perform a 'quick verify' procedure
on the microcontroller. This involves the following:

1 Apply power (5V Vdd, Ground Vss).

2 Hold T0CKI high.

3 Hold OSC1 low.

4 Bring Vpp up to the programming voltage (13V)
(this puts the PIC into programming mode and
resets the program counter).

5 The value at the current program counter can
be read from pins RA0-RA3, RB0-RB7 (the
PIC16C57C has a 12-bit word).

6 Set OSC1 high. This increments the program
counter.

7 Set OSC1 low and repeat step 5.

8 Continue until all locations are read.

Using this procedure, the first location to be read is
a special configuration register which has a pseudo-
address of 0xFFF. Once OSC1 is clocked (at steps
6 and 7) the next location to be read is memory
location 0x000 then location 0x001 and so on.

This microcontroller is from a family
of popular microcontrollers made
by Microchip Technology. These
microcontrollers are also popular in the
hobby market, so there is a large amount
of documentation readily available. The
datasheet for the PIC16C57C can be
found amongst a range of documentation
on the microcontroller family here:

 • http://www.microchip.com/
wwwproducts/en/PIC16C57C

This includes documentation on the
programming and verification protocol,
which is useful for reverse engineering.

+1T0CKI 28 MCLR/VPP

9RA3 20 RC2

5NC 24 RC6

13RB3 16 RB6

3NC 26 OSC2/CLKOUT

11RB1 18 RC0

7RA1 22 RC4

2VDD 27 OSC1/CLKIN

10RB0 19 RC1

6RA0 23 RC5

14RB4 15 RB5

4VSS 25 RC7

12RB2 17 RB7

8RA2 21 RC3

PIC16C57C

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com
http://www.microchip.com/wwwproducts/en/PIC16C57C
http://www.microchip.com/wwwproducts/en/PIC16C57C

page 5 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

BUILDING A VERIFIER

Commercial PIC programmers can be used to read
the contents of the PIC using this procedure, but
it is also a sufficiently straight-forward protocol
that a simple single-purpose 'PIC16C57C Verifier'
can be created with a small microcontroller
development board such as an Arduino (any
similar system with a sufficient number of easily
available general purpose I/O pins could be used
- such as a Raspberry Pi). The 13V programming
voltage needs to be applied externally, as
development systems such as Arduino and
Raspberry Pi tend to only have 5V and other low
voltages available.

The picture on the right shows an Arduino Uno
board wired to a ZIF socket holding the PIC16C57C
removed from the KVM switch. The power supply
for providing the 13V programming voltage is also
shown. Due to I/O restrictions on the Arduino Uno,
only four bits are being read from the PIC but it
would be possible to reconfigure the device to
read all other bits, such that the entire contents of
the PIC16C57C could be read in several passes.
Other development boards (such as the Arduino
Mega) have sufficient I/O to read all 12 bits
simultaneously.

CODE PROTECTION

The first word to be read from the PIC16C57C
is the configuration register. This contains
configuration data for the watchdog and
oscillator, and also contains the 'code protection'
bit. If the 'code protection' bit is zero, then code
protection is enabled. When code protection is
enabled, it is not possible to read the contents
of the PIC16C57C memory (the verification
operation succeeds, but the value returned does
not represent the valid contents of the associated
PIC16C57C memory location).

Unfortunately, reading the configuration register
from the PIC16C57C taken from the Belkin KVM
switch showed that the code protection bits were
enabled, meaning that it was not possible to read
the firmware from the PIC16C57C.

LOGIC ANALYSIS
RATIONALE
The previous sections detail the firmware analysis
procedure, with the conclusion that the firmware
cannot be read from the PIC16C57. This means that
the goal of subverting the KVM switch for use as a
key-logger must be achieved in one of two other ways:

 • Analyse the logic implemented by the PIC16C57C
microcontroller and rewrite the firmware from
scratch on an equivalent PIC device.

 • Analyse enough of the logic implemented by
the PIC16C57C microcontroller to determine
how to piggyback a secondary microcontroller
to a subset of the device pins in order to
monitor keypress data and implement a key-
logger in the secondary microcontroller.

Verification of PIC16C57C using Arduino

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com

page 6 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

DETERMINE PINOUT FUNCTIONS

OV ERVIE W

The PIC16C57C has 20 general purpose I/O pins.
The function of these pins can be investigated by
using a multimeter, oscilloscope, or logic analyser
on the pin. This should be performed while putting
the KVM switch through various scenarios in order
to see how the pin behaviour correlates with the
functionality of the KVM switch. Voltage transitions
on the pins may be slow (e.g. corresponding to an
LED turning on or off) or fast (e.g. corresponding
to the clock/data lines of the keyboard or mouse
interfaces). Fast transitions might only be detected
by an oscilloscope or logic analyser.

Each pin should be investigated while running
through a variety of functional scenarios with the
KVM switch:

 • Switching between outputs.

 • Typing on the keyboard while each of the
outputs is active.

 • Moving the mouse while each of the outputs is
active.

 • Plugging an end system in/out of one of the
output ports.

Further analysis of the PCB layout can be made
with the 'resistance' mode of a multimeter to
determine which pins are directly connected to other
components on the PCB. This is made easier by the
fact that the PIC16C57C in the Belkin KVM switch is
mounted in a socket, meaning that removing the PIC
from the socket allows resistance between pins and
other components to be more reliably measured.

An oscilloscope being used to investigate pin functionality while keys are pressed on a keyboard.

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com

page 7 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

Some of the pins on the PIC16C57C have fixed
functionality (see pinout diagram on page 3) but
it is the general purpose I/O pins 6-25 which are
of interest. Investigation with an oscilloscope and
multimeter revealed the following:

PINS 6-14

Pin 6 - RA0: Usually high, but pulled low while push-
button switch is depressed.

 • Most likely the input pin for the push-button
switch to change outputs.

Pin 7 - RA1: Low when KVM Port 1 output is selected
and high when KVM Port 2 output is selected.

 • Examining traces on the PCB, this also matches
the sense of the input select pins on the
74HC4053D multiplexers.

 • Using the multimeter in resistance mode, this pin
is connected to the multiplex selector inputs S1,
S2 and S3 on ICs U7, U8, U9, U10 (the 74HC4053D
multiplexers).

 • This therefore looks like an output pin that selects
between Port 1 and Port 2 output on the KVM switch.

Pin 8 - RA2: As with Pin 7, this is low when KVM
Port 1 output is selected and high when KVM Port 2
output is selected.

 • Using the multimeter in resistance mode, this pin
is connected to the multiplex selector inputs S1,
S2, and S3 on IC U2

 • Using the multimeter in resistance mode, this
pin is also connected to OE1 in IC U3 (similar
functionality to the multiplexer).

 • This therefore looks like another output pin that selects
between Port 1 and Port 2 output on the KVM switch.

 • It's not clear why both Pin 7 and Pin 8 appear
to have similar functionality. One possibility is
that Pin 7 controls the PS/2 (mouse, keyboard)
switching, and Pin 8 controls the video switching.
This would need further investigation.

Pin 9 - RA3: Usually high, but activity is seen during
switching between ports on the KVM switch.

 • Looking in detail at the activity on this pin during
switching, the oscilloscope showed a waveform
of about 3 cycles/cm on the oscilloscope screen
when the scope is on 1ms/cm time-base - which

makes this a 3kHz waveform.

 • It is likely that this pin is directly driving the buzzer
as a short high pitched (about 3kHz) beep is made
by the KVM switch under certain circumstances,
for instance, when switching between output ports.

Pin 10 - RB0 - High when there is a device
connected to KVM Port 1.

 • This appears to be an 'output enable' for the device
connected to Port 1.

 • During switching between ports, this pin is pulled low
for a significant period (~1 sec) and then returns high.

 • When the pin is pulled low, no output is seen from Port
1. There is activity on pins 20-23 (mouse/keyboard).

 • As a point of interest, the LEDs showing which
port is selected also do not change until after
this ~1 sec period).

Pin 11 - RB1: High when there is a device connected
to KVM Port 2.

 • This appears to be an 'output enable' for the device
connected to Port 2.

 • During switching between ports, this pin is pulled low
for a significant period (~1 sec) and then returns high.

 • When the pin is pulled low, no output is seen from Port
2. There is activity on pins 20-23 (mouse/keyboard).

 • The LEDs showing which port is selected also
do not change until after this ~1 sec period).

12 - RB2 - HIGH: No activity seen, no connections
seen on PCB.

13 - RB3 - LOW: No activity seen, no connections
seen on PCB.

14 - RB4 - HIGH: No activity seen.

 • PCB trace visible, apparently to Pin 14 on U9.
Confirmed with multimeter in resistance mode.

 • This is 'Input 1' on the 74HC4053 which means it
will be switch between a pin on KVM Port 1 and
Port 2 via the multiplexer.

 • This may be an input or output — that is, either
the KVM switch will send a signal to the PS/2
connector on the KVM output port, or receive a
signal. However, no activity is seen on this pin in
any of the scenarios tested.

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com

page 8 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

PINS 15-25

Pin 15 - RB5 - HIGH: No activity seen, no
connections seen on PCB.

Pin 16 - RB6 - HIGH: No activity seen, no
connections seen on PCB.

Pin 17 - RB7 - HIGH: No activity seen, no
connections seen on PCB.

Pin 18 - RC0 - LOW: No activity seen, no
connections seen on PCB.

Pin 19 - RC1 - HIGH: No activity seen, no
connections seen on PCB.

Pin 20 - RC2: PS/2 Mouse – Clock

 • The oscilloscope shows regular bursts of pulses
on this pin when the mouse is moved.

 • The regularity of the pulses implies that this is the
PS/2 clock for the mouse.

 • Some activity on this pin was also seen during
switching between KVM ports, when there was no
mouse movement. See comments below about
the purpose of pins 10 and 11.

21 - RC3: PS/2 Mouse – Data

 • The oscilloscope shows irregular bursts of pulses
on this pin when the mouse is moved.

 • The irregularity of the pulses implies that this is
the PS/2 data for the mouse.

 • Some activity on this pin was also seen during
switching between KVM ports, when there was no
mouse movement. See comments below about the
purpose of pins 10 and 11.

22 - RC4: PS/2 Keyboard – Clock

 • The oscilloscope shows a regular burst of pulses
on this pin when a key is pressed or released.

 • The regularity of the pulses implies that this is the
PS/2 clock for the keyboard.

23 - RC5: PS/2 Keyboard – Data

 • The oscilloscope shows an irregular burst of
pulses on this pin when a key is pressed or
released.

 • The irregularity of the pulses implies that this is
the PS/2 data for the keyboard.

24 - RC6: LED1

 • This pin corresponds directly to the state of the
LED for KVM Port 1. It is therefore likely to be the
output driver for the LED.

25 - RC7: LED2

 • This pin corresponds directly to the state of the
LED for KVM Port 2. It is therefore likely to be the
output driver for the LED.

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com

page 9 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

PURPOSE OF PINS 10-11:
OUTPUT ISOL ATION

It was noted above that pins 10 and 11 are driven
low during switching. Also during switching, some
activity is seen on the PS/2 clock/data pins (20-
23). It appears that the KVM switch temporarily
disables the PS/2 output and sends reset signals
to the mouse and keyboard as part of the switching
process. The PS/2 protocol is bi-directional
allowing the host to control features on the device,
for example, setting indicators on a keyboard to
show the state of caps lock, num lock, etc. The
KVM switch needs to keep track of these features
on each device (mouse and keyboard) per host/
port, resetting them to their last known state for
each host when switching between ports. To do this
during switching, the KVM switch pulls pin 10 or 11
low to disable output to the corresponding output
port then sends the appropriate signals on the PS/2
bus to the attached mouse or keyboard to reset
their state. Pulling pin 10 or 11 low is necessary to
prevent the attached host on the corresponding
output port from seeing this signalling between the
KVM switch and the mouse or keyboard.

In addition to this the KVM switch supports hotkey
switching. This is triggered by pressing the 'Scroll
Lock' key twice. At this point, the unit beeps (to
indicate that it has entered its 'hotkey' state) and

waits for additional keypresses for about 1 second.
Any keypress during this time is interpreted by the
KVM switch and not passed on to the connected
computer. This functionality requires that the PS/2
output ports can be disabled while in this 'hotkey'
state and this is achieved by pulling pin 10 or 11
low.

INCOMPLE TE A NA LYSIS

The analysis above has revealed a large proportion
of the functionality of the KVM switch. However,
there are still gaps. Several pins (12-19) were not
seen to have any activity while running through a
variety of KVM scenarios. If these pins were all high
(normally a 'default' or 'inactive' state) then it could
possibly be assumed that these pins are unused.
However, the fact that some of these pins are low
implies that there may be some purpose to them.
Examination of traces on the PCB seem to show
that only Pin 14 is connected, although its purpose
is unclear.

As the analysis is incomplete, regenerating a
working firmware from scratch is likely to be
a challenge. Of the two options for subverting
the KVM switch to implement a key-logger (see
the 'Rationale' section above) the option of
piggybacking a secondary microcontroller seems
more tenable.

THE PS/2 INTERFACE

In order to access the keyboard data on the PS/2 interfaces in the KVM switch an understanding of the PS/2
protocol is required. A description of the PS/2 protocol can be found at the following link:

 • http://www.computer-engineering.org/ps2protocol/

The PS/2 interface can be driven by either the host or the device, and the electrical characteristics of the
interface mean that it should be possible to inject data onto the PS/2 bus even when both host and device are
connected. This will be useful when attempting to piggyback a secondary microcontroller in the KVM switch.

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com
http://www.computer-engineering.org/ps2protocol/

page 10 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

IMPLEMENTING
A KEYLOGGER
Given the analysis above, it should be possible
to piggyback a secondary microcontroller on the
PIC16C57C to implement a keylogger. Ideally this
should be done using only signals on the pins of
the PIC16C57C itself which would allow the same
functionality to be implemented in replacement PIC
firmware as an alternative.

Exfiltration should be via the existing interfaces on
the KVM switch. The attacker would then only need
in-situ access to the KVM switch in order to extract
the data. One option is to implement an additional
hotkey sequence in the secondary microcontroller.
When this hotkey sequence is triggered, the
secondary microcontroller would dump logged
keypresses as keypress data to whatever system is
connected to the KVM switch. This would allow an
attacker to, for example, open a text editor on the
target system and then press the hotkey sequence
to dump the logged data into a text file.

ELECTRICAL CONSTRAINTS

There is a significant constraint when piggybacking
on the PIC16C57C that any pin configured as an
output on the PIC16C57C cannot be driven to a
different state by the piggyback microcontroller.
The PIC16C57C data sheet (section 7.6.1) says:

"A pin actively outputting a high or a low
should not be driven from external devices
at the same time in order to change the level
on this pin (“wired-or”, “wired-and”). The
resulting high output currents may damage
the chip."

This means that an attempt to implement a
keylogger and exfiltrate the logged data must use
only pins on the PIC16C57C that are configured
as inputs.

SHARING THE PS/2 BUS

One of the options for exfiltrating data from the
keylogger is to send the data as a sequence of
keypresses to the attached host computer. In order
to do this, the KVM switch would have to take the
role of the peripheral device (keyboard) on the PS/2
bus communicating with the host computer as a

'fake' keyboard. However, the PS/2 bus will also be
connected to the real keyboard device at the same
time so the question is whether exfiltration via the
PS/2 bus can be achieved in this way.

The PS/2 bus is designed to be a point-to-point
connection between a host computer and a
peripheral device. It is a simple two-wire protocol
(clock and data) and allows bi-directional
communication. This is achieved by using an open-
collector interface for both clock and data pins
allowing either host computer or peripheral device
to drive the state of either pin to low.

From a purely electrical standpoint, it is possible
for a second peripheral device (the KVM switch) to
drive the clock and data pins of the PS/2 interface.
From the host computer both peripheral devices (real
keyboard, and KVM switch acting as 'fake' keyboard)
would be indistinguishable. However, there is a
question of whether activity from the 'fake' keyboard
may cause unexpected behaviour in the real keyboard.

In the PS/2 protocol, a majority of the
communication is in the direction between the
peripheral device and the host. The clock is always
generated by the peripheral device meaning that
the peripheral device is generating clock and data
signals the majority of the time. If the host needs to
send data to the peripheral device (for example, to
set the state of LEDs, such as caps lock), the host
first alerts the peripheral device that it wishes to
send data by holding the clock line low for more
than 100μs as part of a 'request to send' signal.
Therefore, the concern is that activity on the PS/2
bus of the KVM switch acting as a 'fake' keyboard
could be interpreted by the real keyboard as a
'request to send' from the host.

When sending data on the PS/2 bus, the

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com

page 11 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

peripheral device generates a clock signal in the
range 10-16.7kHz, therefore the clock cycle is
100μs at the slowest clock speed (10kHz). This
means that the 'fake' keyboard will be pulling
the clock low for a maximum of 50μs meaning
that this should not be interpreted by the real
keyboard as a 'request to send'. Therefore,
sharing the PS/2 bus should be possible.

DETECTING THE HOTKEY SEQUENCE

Exfiltration of the logged data will be triggered
by an additional hotkey sequence. The KVM
switch implements hotkey sequences triggered
by pressing the 'Scroll Lock' key twice within a
certain timeframe. The PIC16C57C then pulls the
appropriate 'output enable' pin low (pins 10 or 11
on the PIC16C57C) for about 1s to prevent further
keypresses from being sent to the host, while it
waits for follow-on keys in the hotkey sequence. For
example, pressing the '1' or '2' keys will then cause
a switch to output ports 1 or 2, respectively.

There are two options for implementing the hotkey
sequence for exfiltration of logged data:

 • Detect the triggering key sequence ('Scroll
Lock' pressed twice) independently in the
piggyback microcontroller.

 • Detect the 'output enable' pins being pulled low,
indicating that the hotkey sequence has been
triggered.

The first option (independently detecting the hotkey
trigger sequence) has a risk that the PIC16C57C
and the piggyback microcontroller may not detect
the hotkey trigger sequence in exactly the same
way, for example, differences in timing. The second
option based on the state of the 'output enable' pins
will therefore be used, because it is a more reliable
way to detect that the KVM switch has entered the
hotkey trigger state.

PROOF-OF-CONCEPT HARDWARE

In order to produce a proof-of-concept
implementation of a keylogger an Arduino Uno
development board was used. This has a range of
I/O facilities and has a straight-forward 'C' based
programming environment, providing easy access
to I/O pins for prototyping.

The picture above shows the Arduino Uno board
with the following piggyback connections onto the
KVM switch PIC16C57C:

 • Black: PIC16C57C pin 4 (Ground). Arduino
ground.

 • Blue: PIC16C57C pin 22 (PS/2 keyboard clock).
Arduino digital I/O pin 2.

 • Green: PIC16C57C pin 23 (PS/2 keyboard
data). Arduino digital I/O pin 8.

 • Red: PIC16C57C pin 11 ('Output enable' signal
for KVM switch port 2). Arduino digital I/O pin 9.

For the purposes of the proof-of-concept
implementation, only the Port 2 'output enable'
line is being used.

Proof-of-Concept Keylogger Hardware

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com

page 12 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

PROOF-OF-CONCEPT SOFTWARE

CONTROL FLOW

The Arduino software to implement a keylogger will
broadly have three states:

 • While the 'output enable' is high (output
enabled), log keypress data.

 • When the 'output enable' is low (output
disabled due to hotkey trigger sequence),
detect the exfiltration hotkey sequence.

 • If the exfiltration hotkey sequence has been
detected and the 'output enable' transitions
from low to high (becoming enabled again),
exfiltrate the keypress data.

If the exfiltration hotkey sequence is detected, it
is necessary to wait for the 'output enable' to go
high again otherwise any PS/2 keypress data that
is injected onto the PS/2 bus would not be seen
by the host computer. For this proof-of-concept,
the exfiltration hotkey sequence is set as two
consecutive presses of the 'Q' key ('Q' for 'Query',
and two presses so that it is not accidentally
invoked by the legitimate user of the KVM switch).

K E Y LOGGING

One advantage of using an Arduino development
board is the large range of software libraries
available. For this proof-of-concept the
'PS2Keyboard' library is used, which is available
under the LGPL. This implements an interrupt-
driven PS/2 keyboard reading library and
automatically converts scan codes to ASCII, taking
account of the shift key state to provide ASCII
keypress data to the application. The Arduino
Pin 2 is used for the PS/2 clock as this supports
interrupts on the Arduino Uno board.

Due to the manner in which the Arduino board
is connected to the KVM PIC16C57C, the same
pins on the Arduino need to be used to both
read PS/2 keyboard data during keylogging, and
write PS/2 keyboard data during exfiltration. The
'PS2Keyboard' library only supports reading PS/2

data; a separate library is required to send data.
In order to support this, a small addition to the
'PS2Keyboard' library had to be made in the addition
of an end() method for the 'PS2Keyboard' library to
release the interrupt used to read data. Without this
addition, the 'PS2Keyboard' library would continue
to read data during exfiltration.

During keylogging, keypress data received from
this library is stored in a ring buffer ready for
exfiltration. Note that this keypress data is ASCII
rather than PS/2 scan codes so this needs to be
taken into account during exfiltration.

E XFILTR ATION

In order to exfiltrate logged key data over the PS/2
keyboard interface, a library for sending PS/2
keyboard data is required. A library needed to be
written for this proof-of-concept as no such library
was identified in the large selection of Arduino
libraries freely available.

The PS/2 protocol uses a clock running in the
10-16.7kHz range and sends serial data with the
following characteristics:

 • One start bit (data held low).

 • 8 data bits, LSB first.

 • One parity bit (odd parity).

 • One stop bit (data held high).

Data is read by the host on the falling edge of the
clock (transition from high to low).

This data transmission format does not correspond
with any of the built-in data transmission protocols
in the Arduino meaning that a custom driver
needed to be written. In order to implement the
PS/2 protocol, a timer can be used that generates
software interrupts at twice the rate of the 10-
16.7kHz range required (in order to generate both
rising and falling clock edges). The Arduino Uno
supports 3 hardware timers that can generate
software interrupts and Timer 2 was selected for
this proof-of-concept; Timer 1 is used by some of
the standard Arduino libraries, making it unsuitable.

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com
 https://www.pjrc.com/teensy/td_libs_PS2Keyboard.html

page 13 of 13© 2017 Cisco. All rights reserved. css-adv-outreach@cisco.com | talosintelligence.com

A driver was written that manually sets the PS/2
clock and data pins on a 25kHz interrupt running
off Timer 2 on the Arduino board. On each interrupt,
the clock pin is driven successively high or low and
the data pin is manipulated to generate the start bit,
data bits, parity and stop bits as required.

When exfiltration is triggered by the hotkey
sequence, logged data from the ring buffer needs
to be exfiltrated. This is ASCII data so it cannot be
sent directly as PS/2 scan codes. Instead, the data
is exfiltrated as the hexadecimal representation of
the ASCII of the logged keypresses. This can easily
be converted back to the original keypress data
once exfiltrated. For ease of conversion, the data
was exfiltrated in a form compatible with the 'xxd'
utility program available on Linux and other similar
systems, similar to that shown below:

7373682074617267657473797374656d
0a726f6f740a50617373773072643132
330a

For each hex character output, the 'key depressed'
keyboard scan code corresponding to that hex
character (0-9 and A-F) is generated by the PS/2
driver, immediately followed by the 'key released'
scan code for that same key. This continues until
the entire ring buffer has been output.

The outcome of this exfiltration process is that
the attached host computer sees a sequence
of keypresses corresponding to the hex
representation of the logged data. An attacker
wishing to capture this data simply has to open
a text editor on the target system, trigger the
exfiltration, and watch as the exfiltrated data is
'typed' into the text editor.

SOURCE CODE

Source code for the proof-of-concept keylogger
can be found here:

 • https://labs.portcullis.co.uk/whitepapers/
hacking-the-belkin-e-series-omniview-2-port-
kvm-switch/

CONCLUSION
Hardware modification represents a genuine threat
to organisations. Relatively simple hardware can,
with the appropriate knowledge, be subverted to
surreptitiously collect and ultimately exfiltrate data.
Companies should remain abreast of the threat
and consider conducting security appraisals of all
devices deployed in sensitive areas.

Understanding ‘normal’ network traffic and
remaining vigilant for unexpected and unusual
network traffic, such as a new device suddenly
connecting externally, can help organisations
detect and block exfiltration over networks.
However, in critical environments organisations
need to identify and track hardware that is
allowed to connect to critical systems including
simple devices such as peripherals that are easy
to overlook. The threat of physical tampering of
devices means that in some environments physical
examination of equipment is necessary to detect
unauthorised modification.

mailto:css-adv-outreach%40cisco.com?subject=
http://talosintelligence.com
https://labs.portcullis.co.uk/whitepapers/hacking-the-belkin-e-series-omniview-2-port-kvm-switch/
https://labs.portcullis.co.uk/whitepapers/hacking-the-belkin-e-series-omniview-2-port-kvm-switch/
https://labs.portcullis.co.uk/whitepapers/hacking-the-belkin-e-series-omniview-2-port-kvm-switch/

