CVE-2023-36864
An integer overflow vulnerability exists in the fstReaderIterBlocks2 temp_signal_value_buf allocation functionality of GTKWave 3.3.115. A specially crafted .fst file can lead to arbitrary code execution. A victim would need to open a malicious file to trigger this vulnerability.
The versions below were either tested or verified to be vulnerable by Talos or confirmed to be vulnerable by the vendor.
GTKWave 3.3.115
GTKWave - https://gtkwave.sourceforge.net
7.8 - CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
CWE-190 - Integer Overflow or Wraparound
GTKWave is a wave viewer, often used to analyze FPGA simulations and logic analyzer captures. It includes a GUI to view and analyze traces, as well as convert across several file formats (.lxt
, .lxt2
, .vzt
, .fst
, .ghw
, .vcd
, .evcd
) either by using the UI or its command line tools. GTKWave is available for Linux, Windows and MacOS. Trace files can be shared within teams or organizations, for example to compare results of simulation runs across different design implementations, to analyze protocols captured with logic analyzers or just as a reference when porting design implementations.
GTKWave sets up mime types for its supported extensions. For example, it’s enough for a victim to double-click on a wave file received by e-mail to trigger the vulnerability described in this advisory.
The function fstReaderOpen
is used to parse .fst
files.
void *fstReaderOpen(const char *nam)
{
[1] struct fstReaderContext *xc = (struct fstReaderContext *)calloc(1, sizeof(struct fstReaderContext));
[2] if((!nam)||(!(xc->f=fopen(nam, "rb"))))
{
free(xc);
xc=NULL;
}
else
{
int flen = strlen(nam);
char *hf = (char *)calloc(1, flen + 6);
int rc;
#if defined(FST_UNBUFFERED_IO)
setvbuf(xc->f, (char *)NULL, _IONBF, 0); /* keeps gzip from acting weird in tandem with fopen */
#endif
memcpy(hf, nam, flen);
strcpy(hf + flen, ".hier");
xc->fh = fopen(hf, "rb");
free(hf);
xc->filename = strdup(nam);
[3] rc = fstReaderInit(xc);
At [1] the xc
structure is created. This big (about 65KB) structure is used to hold information regarding the .fst
file.
At [2] the xc->f
field is set to the file pointer returned by fopen
after opening the file being parsed.
Then, the function fstReaderInit
is called [3] to parse the various .fst
sections from the input file.
int fstReaderInit(struct fstReaderContext *xc)
{
fst_off_t blkpos = 0;
fst_off_t endfile;
uint64_t seclen;
int sectype;
uint64_t vc_section_count_actual = 0;
int hdr_incomplete = 0;
int hdr_seen = 0;
int gzread_pass_status = 1;
sectype = fgetc(xc->f);
...
if(gzread_pass_status)
{
fstReaderFseeko(xc, xc->f, 0, SEEK_END);
endfile = ftello(xc->f);
while(blkpos < endfile)
{
fstReaderFseeko(xc, xc->f, blkpos, SEEK_SET);
[4] sectype = fgetc(xc->f);
seclen = fstReaderUint64(xc->f);
if(sectype == EOF)
{
break;
}
[5] if((hdr_incomplete) && (!seclen))
{
break;
}
[6] if(!hdr_seen && (sectype != FST_BL_HDR))
{
break;
}
blkpos++;
...
At [4], the sectype
(1 byte) is read off the file. This variable will tell us which kind of sector we’re parsing. The checks at [5] and [6] are important because we don’t want to trigger them in order to reach the vulnerable code: we need to make sure hdr_incomplete
stays 0 and we start with a FST_BL_HDR
sector, which will set hdr_seen
to 1.
So, if the input file starts with a 0x00
, we’ll land inside the following condition:
...
if(sectype == FST_BL_HDR)
{
if(!hdr_seen)
{
int ch;
double dcheck;
xc->start_time = fstReaderUint64(xc->f);
xc->end_time = fstReaderUint64(xc->f);
[7] hdr_incomplete = (xc->start_time == 0) && (xc->end_time == 0);
...
[8] hdr_seen = 1;
[9] xc->mem_used_by_writer = fstReaderUint64(xc->f);
xc->scope_count = fstReaderUint64(xc->f);
xc->var_count = fstReaderUint64(xc->f);
...
}
}
...
fstReaderUint64
is used to read a 64-bit unsigned integer (big endian) off the file, incrementing the current file offset.
We need to make sure that either start_time
or end_time
are not 0, to not set hdr_incomplete
[7].
At [8] hdr_seen
is set, so we can pass the check at [6] when parsing the next sections.
Finally at [9], other values are read off the file and saved into the xc
structure.
After parsing the header, fstReaderInit
then proceeds to parse other blocks, among them, the FST_BL_GEOM
block:
else if(sectype == FST_BL_GEOM)
{
if(!hdr_incomplete)
{
uint64_t clen = seclen - 24;
uint64_t uclen = fstReaderUint64(xc->f);
unsigned char *ucdata = (unsigned char *)malloc(uclen);
unsigned char *pnt = ucdata;
unsigned int i;
xc->contains_geom_section = 1;
xc->maxhandle = fstReaderUint64(xc->f);
[15] xc->longest_signal_value_len = 32; /* arbitrarily set at 32...this is much longer than an expanded double */
free(xc->process_mask);
xc->process_mask = (unsigned char *)calloc(1, (xc->maxhandle+7)/8);
[10] if(clen != uclen)
{
unsigned char *cdata = (unsigned char *)malloc(clen);
unsigned long destlen = uclen;
unsigned long sourcelen = clen;
int rc;
fstFread(cdata, clen, 1, xc->f);
rc = uncompress(ucdata, &destlen, cdata, sourcelen);
if(rc != Z_OK)
{
fprintf(stderr, FST_APIMESS "fstReaderInit(), geom uncompress rc = %d, exiting.\n", rc);
exit(255);
}
free(cdata);
}
else
{
fstFread(ucdata, uclen, 1, xc->f);
}
free(xc->signal_lens);
[11] xc->signal_lens = (uint32_t *)malloc(sizeof(uint32_t) * xc->maxhandle);
free(xc->signal_typs);
xc->signal_typs = (unsigned char *)malloc(sizeof(unsigned char) * xc->maxhandle);
for(i=0;i<xc->maxhandle;i++)
{
int skiplen;
[12] uint64_t val = fstGetVarint32(pnt, &skiplen);
pnt += skiplen;
if(val)
{
[13] xc->signal_lens[i] = (val != 0xFFFFFFFF) ? val : 0;
xc->signal_typs[i] = FST_VT_VCD_WIRE;
if(xc->signal_lens[i] > xc->longest_signal_value_len)
{
[14] xc->longest_signal_value_len = xc->signal_lens[i];
}
}
else
{
xc->signal_lens[i] = 8; /* backpatch in real */
xc->signal_typs[i] = FST_VT_VCD_REAL;
/* xc->longest_signal_value_len handled above by overly large init size */
}
}
free(xc->temp_signal_value_buf);
[16] xc->temp_signal_value_buf = (unsigned char *)malloc(xc->longest_signal_value_len + 1);
free(ucdata);
}
}
At [10], the FST_BL_GEOM
section is optionally decompressed with zlib. At [11] the signal_lens
buffer is allocated, with xc->maxhandle
elements. Finally, the signal_lens
is filled [13] by reading 32-bit LEB128-encoded integers [12] from file. At [14], xc->longest_signal_value_len
is set to keep track of the largest xc->signal_lens
. Note that by default xc->longest_signal_value_len
is set to 32. Finally at [16] the xc->temp_signal_value_buf
is allocated, adding 1 to xc->longest_signal_value_len
. In this code, there’s no integer overflow issues because xc->longest_signal_value_len
can’t be 0xffffffff, thanks to the check at [13].
However, this is not the only way to define signal_lens
. In fact, if there’s no FST_BL_GEOM
section, the signal_lens
is filled by fstReaderProcessHier
.
Also, upon return from fstReaderOpen
, gtkwave
eventually calls fstReaderIterBlocks2
.
If, however, the file is opened by fst2vcd
, a call to fstReaderProcessHier
happens first. In this case the “hier” section will overwrite any signal_lens
structure defined in the FST_BL_GEOM
section.
This is how signal_lens
are processed inside fstReaderProcessHier
:
int fstReaderProcessHier(void *ctx, FILE *fv) {
struct fstReaderContext *xc = (struct fstReaderContext *)ctx;
...
if (!xc) return (0);
[17] xc->longest_signal_value_len = 32; /* arbitrarily set at 32...this is much longer than an expanded double */
...
xc->maxhandle = 0;
xc->num_alias = 0;
...
fstReaderFseeko(xc, xc->fh, 0, SEEK_SET);
while (!feof(xc->fh)) {
int tag = fgetc(xc->fh);
switch (tag) {
...
[18] case FST_VT_VCD_EVENT:
case FST_VT_VCD_INTEGER:
case FST_VT_VCD_PARAMETER:
case FST_VT_VCD_REAL:
case FST_VT_VCD_REAL_PARAMETER:
case FST_VT_VCD_REG:
case FST_VT_VCD_SUPPLY0:
case FST_VT_VCD_SUPPLY1:
case FST_VT_VCD_TIME:
case FST_VT_VCD_TRI:
case FST_VT_VCD_TRIAND:
case FST_VT_VCD_TRIOR:
case FST_VT_VCD_TRIREG:
case FST_VT_VCD_TRI0:
case FST_VT_VCD_TRI1:
case FST_VT_VCD_WAND:
case FST_VT_VCD_WIRE:
case FST_VT_VCD_WOR:
case FST_VT_VCD_PORT:
case FST_VT_VCD_SPARRAY:
case FST_VT_VCD_REALTIME:
case FST_VT_GEN_STRING:
case FST_VT_SV_BIT:
case FST_VT_SV_LOGIC:
case FST_VT_SV_INT:
case FST_VT_SV_SHORTINT:
case FST_VT_SV_LONGINT:
case FST_VT_SV_BYTE:
case FST_VT_SV_ENUM:
case FST_VT_SV_SHORTREAL:
[19] vartype = tag;
/* vardir = */ fgetc(xc->fh); /* unused in VCD reader, but need to advance read pointer */
pnt = str;
cl = 0;
while ((ch = fgetc(xc->fh))) {
if (cl < FST_ID_NAM_ATTR_SIZ) {
pnt[cl++] = ch;
}
}; /* varname */
pnt[cl] = 0;
[20] len = fstReaderVarint32(xc->fh);
alias = fstReaderVarint32(xc->fh);
if (!alias) {
if (xc->maxhandle == num_signal_dyn) {
num_signal_dyn *= 2;
xc->signal_lens = (uint32_t *)realloc(xc->signal_lens, num_signal_dyn * sizeof(uint32_t));
xc->signal_typs = (unsigned char *)realloc(xc->signal_typs, num_signal_dyn * sizeof(unsigned char));
}
[21] xc->signal_lens[xc->maxhandle] = len;
xc->signal_typs[xc->maxhandle] = vartype;
/* maxvalpos+=len; */
[22] if (len > xc->longest_signal_value_len) {
xc->longest_signal_value_len = len;
}
...
xc->maxhandle++;
} else {
...
}
break;
default:
break;
}
}
...
free(xc->temp_signal_value_buf);
[23] xc->temp_signal_value_buf = (unsigned char *)malloc(xc->longest_signal_value_len + 1);
xc->var_count = xc->maxhandle + xc->num_alias;
free(str);
return (1);
}
At [17], xc->longest_signal_value_len
is initialized to 32. The HIER section is then scanned, and for any matching tag of the list [18], we enter the block at [19].
Two 32-bit varint values are read into len
and alias
[20]. If alias
is not zero, len
is assigned to the current signal_lens
[21], and the biggest signal_lens
value is saved to xc->longest_signal_value_len
[22]. Note that in this case xc->longest_signal_value_len
can have any arbitrary value as there are no checks.
Finally at [23], the xc->temp_signal_value_buf
is allocated using xc->longest_signal_value_len + 1
. If xc->longest_signal_value_len
is 0xffffffff, the addition will wrap around and a call to malloc(0)
will be made, which will allocate a small buffer (depending on the malloc
implementation).
Later on, fstReaderIterBlocks2
is called to parse all VCDATA blocks, as they haven’t been fully parsed in fstReaderInit
. Inside this function there are several spots that may write into xc->temp_signal_value_buf
, which has a small size, leading to out-of-bounds writes in the heap. For example:
for (i = 0; i < tsec_nitems; i++) {
...
while (tc_head[i]) {
idx = tc_head[i] - 1;
vli = fstGetVarint32(mem_for_traversal + headptr[idx], &skiplen);
[24] if (xc->signal_lens[idx] <= 1) {
...
} else {
[25] uint32_t len = xc->signal_lens[idx];
unsigned char *vdata;
[26] vli = fstGetVarint32(mem_for_traversal + headptr[idx], &skiplen);
/* tdelta = vli >> 1; */ /* scan-build */
vdata = mem_for_traversal + headptr[idx] + skiplen;
if (xc->signal_typs[idx] != FST_VT_VCD_REAL) {
if (!(vli & 1)) {
int byte = 0;
int bit;
unsigned int j;
[27] for (j = 0; j < len; j++) {
unsigned char ch;
byte = j / 8;
bit = 7 - (j & 7);
ch = ((vdata[byte] >> bit) & 1) | '0';
[28] xc->temp_signal_value_buf[j] = ch;
}
xc->temp_signal_value_buf[j] = 0;
The code above, inside the fstReaderIterBlocks2
function, processes the time_table
and tc_head
, to populate the temporary .hier
file associated with the xc
state.
If the signal_lens
for the current idx
is bigger than 1 [24], we enter the else
block.
The value for the current signal_lens
is stored in len
[25], and a 32-bit varint is then read from file [26] into vli
. Right after this varint we’ll have vdata
in the file, so that’s a buffer completely under control.
If the current signal_typs
is not FST_VT_VCD_REAL
and the LSB of vli
is 1, we enter a loop that iterates len
times [27] (recall that as len
is a signal_lens
value, this field is arbitrarily controlled). Eventually, after enough loops, xc->temp_signal_value_buf[j] = ch;
[28] will write out-of-bounds in the heap.
This out-of-bounds write can be controlled by defining two signal lens: one with a big value, enough to write out-of-bounds (for example, 0x7f is enough as a proof-of-concept), and a second signal_lens with a value of 0xffffffff, to trigger the integer overflow, which in turn leads to the small temp_signal_value_buf
allocation. As vdata
is also controlled, the out-of-bounds write is completely controlled, leading to arbitrary code execution.
==94891==ERROR: AddressSanitizer: heap-buffer-overflow on address 0xf5f005b1 at pc 0x565a5464 bp 0xffffd258 sp 0xffffd24c
WRITE of size 1 at 0xf5f005b1 thread T0
#0 0x565a5463 in fstReaderIterBlocks2 fst/fstapi.c:5783
#1 0x5659ea84 in fstReaderIterBlocks fst/fstapi.c:4999
#2 0x5655908d in main src/helpers/fst2vcd.c:185
#3 0xf7659294 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
#4 0xf7659357 in __libc_start_main_impl ../csu/libc-start.c:381
#5 0x56558686 in _start (fst2vcd+0x3686)
0xf5f005b1 is located 0 bytes to the right of 1-byte region [0xf5f005b0,0xf5f005b1)
allocated by thread T0 here:
#0 0xf7a55ffb in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:69
#1 0x5659a629 in fstReaderProcessHier fst/fstapi.c:4555
#2 0x56558ff7 in main src/helpers/fst2vcd.c:179
#3 0xf7659294 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
SUMMARY: AddressSanitizer: heap-buffer-overflow fst/fstapi.c:5783 in fstReaderIterBlocks2
Shadow bytes around the buggy address:
0x3ebe0060: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x3ebe0070: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x3ebe0080: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x3ebe0090: fa fa fa fa fa fa fa fa fa fa fa fa fa fa 00 04
0x3ebe00a0: fa fa 02 fa fa fa fd fa fa fa 00 fa fa fa 00 fa
=>0x3ebe00b0: fa fa 00 fa fa fa[01]fa fa fa 01 fa fa fa 02 fa
0x3ebe00c0: fa fa 00 fa fa fa fd fa fa fa fd fa fa fa fd fa
0x3ebe00d0: fa fa fd fa fa fa 00 06 fa fa 00 06 fa fa 00 04
0x3ebe00e0: fa fa 00 03 fa fa 00 04 fa fa 00 05 fa fa 00 04
0x3ebe00f0: fa fa 00 05 fa fa 00 00 fa fa fa fa fa fa fa fa
0x3ebe0100: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5
Stack use after scope: f8
Global redzone: f9
Global init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
Fixed in version 3.3.118, available from https://sourceforge.net/projects/gtkwave/files/gtkwave-3.3.118/
2023-07-10 - Initial Vendor Contact
2023-07-18 - Vendor Disclosure
2023-12-31 - Vendor Patch Release
2024-01-08 - Public Release
Discovered by Claudio Bozzato of Cisco Talos.