Talos Vulnerability Report

TALOS-2024-2041

Wavlink AC3000 wireless.cgi set_wifi_basic() buffer overflow vulnerability

January 14, 2025
CVE Number

CVE-2024-36493

SUMMARY

A stack-based buffer overflow vulnerability exists in the wireless.cgi set_wifi_basic() functionality of Wavlink AC3000 M33A8.V5030.210505. A specially crafted HTTP request can lead to arbitrary command execution. An attacker can make an authenticated HTTP request to trigger this vulnerability.

CONFIRMED VULNERABLE VERSIONS

The versions below were either tested or verified to be vulnerable by Talos or confirmed to be vulnerable by the vendor.

Wavlink AC3000 M33A8.V5030.210505

PRODUCT URLS

Wavlink AC3000 - https://www.wavlink.com/en_us/product/WL-WN533A8.html

CVSSv3 SCORE

9.1 - CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

CWE

CWE-121 - Stack-based Buffer Overflow

DETAILS

The Wavlink AC3000 wireless router is predominately one of the most popular gigabit routers in the US, in part due to both its potential wireless and wired speed capabilities and extremely low price point (costing at the time of this writing ~$60 USD). Among the configuration options, it’s also able to act as a standalone wireless gateway, a basic network router, or a wireless repeater.

When interacting with and configuring the Wavlink AC3000 wifi router, as is typical of most wifi routers, an administrator logs in via some web portal and configures appropriate options via the HTTP interface. In the case of this particular router, and in another somewhat common execution pattern, these HTML pages can invoke .cgi binaries due to how the lighttpd server is configured. Since all of these .shtml and .cgi files are located in the web root, anyone with network access to the device doesn’t actually need to log in to the device to interact with these .cgi files, and it usually is the responsibility of the .cgi binary to check if the authentication is completed successfully. On this device, one will see a check_valid_user() function in each individual .cgi binary which will check the session cookie of the HTTP request to see if it’s coming from a validly logged in user.

Assuming that we’ve passed this check in the wireless.cgi binary, we then run into a set of functions that we can call based off of what we pass for the page= parameter in our HTTP POST request. Of the available commands, we focus on the following:

00401b8c                      int32_t webget_page = web_get("page", contlen_p1malloc_1, 0)
00401bb4                      if (strcmp(str1: webget_page, str2: "basic") == 0)
00401bbc                          set_wifi_basic(contlen_p1malloc_1)

If we provide page=basic, we enter the set_wifi_basic function and our provided POST data is further parsed therein:

00403514  int32_t set_wifi_basic(int32_t arg1)

00403578      int32_t $v0_1 = strdup(web_get("hiddenSSID24g", arg1, 0))
004035b0      int32_t $v0_3 = strdup(web_get("hiddenSSID5g", arg1, 0))
004035e8      int32_t $v0_5 = strdup(web_get("hiddenSSID5g_2", arg1, 0))
00403620      int32_t $v0_7 = strdup(web_get("WiFiOff2G", arg1, 0))
00403658      int32_t $v0_9 = strdup(web_get("WiFiOff5G", arg1, 0))
00403690      int32_t $v0_11 = strdup(web_get("WiFiOff5G_2", arg1, 0))
004036c8      int32_t vulnerable = strdup(web_get("SSID2G", arg1, 0))   // [1]
00403700      int32_t $v0_14 = strdup(web_get("SSID5G", arg1, 0))
00403738      int32_t $v0_16 = strdup(web_get("SSID5G_2", arg1, 0))
00403770      int32_t $v0_18 = strdup(web_get("AuthMethod2g", arg1, 0))
004037a8      int32_t $v0_20 = strdup(web_get("AuthMethod5g", arg1, 0))
004037e0      int32_t $v0_22 = strdup(web_get("AuthMethod5g_2", arg1, 0))
00403818      int32_t $v0_24 = strdup(web_get("EncrypType2g", arg1, 0))
00403850      int32_t $v0_26 = strdup(web_get("EncrypType5g", arg1, 0))
00403888      int32_t $v0_28 = strdup(web_get("EncrypType5g_2", arg1, 0))
004038c0      int32_t $v0_30 = strdup(web_get("WPAPSK1_2G", arg1, 0))
004038f8      int32_t $v0_32 = strdup(web_get("WPAPSK1_5G", arg1, 0))
00403930      int32_t $v0_34 = strdup(web_get("WPAPSK1_5G_2", arg1, 0))

00403a18      void var_98
00403a18      sprintf(&var_98, "%s_Touch", vulnerable)  // [2]

At [1], we see the binary copy our arbitrary length SSID2G POST parameter to the heap, and at [2] this variable is then copied to the stack with an sprintf. Since there’s no length checking whatsoever on this POST parameter, we can easily pass in a buffer greater than length 0x98 and overwrite the return address of the function, resulting in code execution.

Crash Information

Thread 2.1 "wireless.cgi" received signal SIGSEGV, Segmentation fault.
0x44444444 in ?? ()
(gdb) bt                                                                                                              #0  0x44444444 in ?? ()
Backtrace stopped: previous frame identical to this frame (corrupt stack?)

(gdb) info proc map
process 12608
Mapped address spaces:

        Start Addr   End Addr       Size     Offset  Perms   objfile
          0x400000   0x410000    0x10000        0x0  r-xp   /etc_ro/lighttpd/www/cgi-bin/wireless.cgi
          0x410000   0x41a000     0xa000    0x10000  rw-p   /etc_ro/lighttpd/www/cgi-bin/wireless.cgi
          0x48d000   0x4a1000    0x14000        0x0  rw-p   [heap]
        0x76e23000 0x76eb8000    0x95000        0x0  r-xp   /lib/libuClibc-0.9.33.2.so
        0x76eb8000 0x76ec7000     0xf000        0x0  ---p
        0x76ec7000 0x76ec8000     0x1000    0x94000  r--p   /lib/libuClibc-0.9.33.2.so
        0x76ec8000 0x76ec9000     0x1000    0x95000  rw-p   /lib/libuClibc-0.9.33.2.so
        0x76ec9000 0x76ece000     0x5000        0x0  rw-p
        0x76ece000 0x76edd000     0xf000        0x0  r-xp   /lib/libwebutil.so
        0x76edd000 0x76eec000     0xf000        0x0  ---p
        0x76eec000 0x76ef6000     0xa000     0xe000  rw-p   /lib/libwebutil.so
        0x76ef6000 0x77036000   0x140000        0x0  rw-p
        0x77036000 0x7703c000     0x6000        0x0  r-xp   /lib/ld-uClibc-0.9.33.2.so
        0x7704b000 0x7704c000     0x1000     0x5000  r--p   /lib/ld-uClibc-0.9.33.2.so
        0x7704c000 0x7704d000     0x1000     0x6000  rw-p   /lib/ld-uClibc-0.9.33.2.so
        0x7704d000 0x7704e000     0x1000        0x0  rw-p
        0x7fec1000 0x7fee2000    0x21000        0x0  rwxp   [stack]
        0x7fff7000 0x7fff8000     0x1000        0x0  r-xp   [vdso]

(gdb) info reg
          zero       at       v0       v1       a0       a1       a2       a3
 R0   00000000 00000000 7fee0fd4 00005288 00000000 0048d0c0 0048d158 7fff7004
            t0       t1       t2       t3       t4       t5       t6       t7
 R8   76ecf2b4 76ece6e4 00000000 ffffffff 77036000 f0000000 00000001 0040305c
            s0       s1       s2       s3       s4       s5       s6       s7
 R16  7fff7004 7fff7004 7fff7004 7fff7004 7fff7004 44444444 44444444 44444444
            t8       t9       k0       k1       gp       sp       s8       ra
 R24  00000054 76ed3288 00000010 00000000 77054010 7fee1058 44444444 44444444
        status       lo       hi badvaddr    cause       pc
      0100fc13 00111044 00000030 44444444 50800008 44444444
          fcsr      fir      hi1      lo1      hi2      lo2      hi3      lo3
      00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
        dspctl  restart
      00000000 00000000
TIMELINE

2024-07-25 - Initial Vendor Contact
2024-07-29 - Requesting reply from vendor
2024-07-30 - Vendor confirms receipt
2024-07-30 - Vendor Disclosure
2024-07-30 - Vendor confirms receipt
2024-09-02 - Status update request sent
2024-10-15 - Status update request. Upcoming expiration date announced.
2024-10-22 - Vendor replies product has been discontinued, but patches are being worked on
2024-11-04 - Status update request for patch release dates
2024-11-12 TALOS advisory release date announced
2025-01-14 - Public Release

Credit

Discovered by Lilith >_> of Cisco Talos.